12 Fantastic Facts About the Immune System

iStock
iStock

If it weren't for our immune system, none of us would live very long. Not only does the immune system protect us from external pathogens like viruses, bacteria, and parasites, it also battles cells that have mutated due to illnesses, like cancer, within the body.

Here are 12 fighting facts about the immune system.

1. THE IMMUNE SYSTEM SAVES LIVES.

The immune system is a complex network of tissues and organs that spreads throughout the entire body. In a nutshell, it works like this: A series of "sensors" within the system detects an intruding pathogen, like bacteria or a virus. Then the sensors signal other parts of the system to kill the pathogen and eliminate the infection.

"The immune system is being bombarded by all sorts of microbes all the time," Russell Vance, professor of immunology at University of California, Berkeley and an investigator for the Howard Hughes Medical Institute, tells Mental Floss. "Yet, even though we're not aware of it, it's saving our lives every day, and doing a remarkably good job of it."

2. BEFORE SCIENTISTS UNDERSTOOD THE IMMUNE SYSTEM, ILLNESS WAS CHALKED UP TO UNBALANCED HUMORS.

Long before physicians realized how invisible pathogens interacted with the body's system for fighting them off, doctors diagnosed all ills of the body and the mind according to the balance of "four humors": melancholic, phlegmatic, choleric, or sanguine. These criteria, devised by the Greek philosopher Hippocrates, were divided between the four elements, which were linked to bodily fluids (a.k.a. humors): earth (black bile), air (blood), water (phlegm) and fire (yellow bile), which also carried properties of cold, hot, moist, or dry. Through a combination of guesswork and observation, physicians would diagnose patients' humors and prescribe treatment that most likely did little to support the immune system's ability to resist infection.

3. TWO MEN WHO UNRAVELED THE IMMUNE SYSTEM'S FUNCTIONS WERE BITTER RIVALS.

Two scientists who discovered key functions of the immune system, Louis Pasteur and Robert Koch, should have been able to see their work as complementary, but they wound up rivals. Pasteur, a French microbiologist, was famous for his experiments demonstrating the mechanism of vaccines using weakened versions of the microbes. Koch, a German physician, established four essential conditions under which pathogenic bacteria can infect hosts, and used them to identify the Mycobacterium tuberculosis bacterium that causes tuberculosis. Though both helped establish the germ theory of disease—one of the foundations of modern medicine today—Pasteur and Koch's feud may have been aggravated by nationalism, a language barrier, criticisms of each other's work, and possibly a hint of jealousy.

4. SPECIALIZED BLOOD CELLS ARE YOUR IMMUNE SYSTEM'S GREATEST WEAPON.

The most powerful weapons in your immune system's arsenal are white blood cells, divided into two main types: lymphocytes, which create antigens for specific pathogens and kill them or escort them out of the body; and phagocytes, which ingest harmful bacteria. White blood cells not only attack foreign pathogens, but recognize these interlopers the next time they meet them and respond more quickly. Many of these immune cells are produced in your bone marrow but also in the spleen, lymph nodes, and thymus, and are stored in some of these tissues and other areas of the body. In the lymph nodes, which are located throughout your body but most noticeably in your armpits, throat, and groin, lymphatic fluid containing white blood cells flows through vein-like tubules to escort foreign invaders out.

5. THE SPLEEN HELPS YOUR IMMUNE SYSTEM WORK.

Though you can live without the spleen, an organ that lies between stomach and diaphragm, it's better to hang onto it for your immune function. According to Adriana Medina, a doctor who specializes in hematology and oncology at the Alvin and Lois Lapidus Cancer Institute at Sinai Hospital in Baltimore, your spleen is "one big lymph node" that makes new white blood cells, and cleans out old blood cells from the body.

It's also a place where immune cells congregate. "Because the immune cells are spread out through the body," Vance says, "eventually they need to communicate with each other." They do so in both the spleen and lymph nodes.

6. YOU HAVE IMMUNE CELLS IN ALL OF YOUR TISSUES.

While immune cells may congregate more in lymph nodes than elsewhere, "every tissue in your body has immune cells stationed in it or circulating through it, constantly roving for signs of attack," Vance explains. These cells also circulate through the blood. The reason for their widespread presence is that there are thousands of different pathogens that might infect us, from bacteria to viruses to parasites. "To eliminate each of those different kinds of threats requires specialized detectors," he says.

7. HOW FRIENDLY YOU'RE FEELING COULD BE LINKED TO YOUR IMMUNE SYSTEM.

From an evolutionary perspective, humans' high sociability may have less to do with our bigger brains, and more to do with our immune system's exposure to a greater number of bacteria and other pathogens.

Researchers at the University of Virginia School of Medicine have theorized that interferon gamma (IG), the immune cytokine that helps the immune system fight invaders, was linked to social behavior, which is one of the ways we become exposed to pathogens.

In mice, they found IG acted as a kind of brake to the brain's prefrontal cortex, essentially stopping aberrant hyperactivity that can cause negative changes in social behavior. When they blocked the IG molecule, the mice's prefrontal cortexes became hyperactive, resulting in less sociability. When they restored the function, the mice's brains returned to normal, as did their social behavior.

8. YOUR IMMUNE SYSTEM MIGHT RECRUIT UNLIKELY ORGANS—LIKE THE APPENDIX—INTO ITS SERVICE.

The appendix gets a bad rap as a vestigial organ that does nothing but occasionally go septic and create a need for immediate surgery. But the appendix may help keep your gut in good shape. According to Gabrielle Belz, professor of molecular immunology at the Walter and Eliza Hall Institute of Medical Research in Melbourne, Australia, research by Duke University's Randal Bollinger and Bill Parker suggests the appendix houses symbiotic bacteria that are important for overall gut health—especially after infections wipe out the gut's good microbes. Special immune cells known as innate lymphoid cells (ILCs) in the appendix may help to repopulate the gut with healthy bacteria and put the gut back on track to recovery.

9. GUT BACTERIA HAS BEEN SHOWN TO BOOST IMMUNE SYSTEMS IN MICE.

Researchers at the University of Chicago noticed that one group of mice in their lab had a stronger response to a cancer treatment than other mice. They eventually traced the reason to a strain of bacteria—Bifidobacterium—in the mice's guts that boosted the animals' immune system to such a degree they could compare it to anti-cancer drugs called checkpoint inhibitors, which keep the immune system from overreacting.

To test their theory, they transferred fecal matter from the robust mice to the stomachs of less immune-strengthened mice, with positive results: The treated mice mounted stronger immune responses and tumor growth slowed. When they compared the bacterial transfer effects with the effects of a checkpoint inhibitor drug, they found that the bacteria treatment was just as effective. The researchers believe that, with further study, the same effect could be seen in human cancer patients.

10. SCIENTISTS ARE TRYING TO HARNESS THE IMMUNE SYSTEM'S "PAC-MAN" CELLS TO TREAT CANCER.

Aggressive pediatric tumors are difficult to treat due to the toxicity of chemotherapy, but some researchers are hoping to develop effective treatments without the harmful side effects. Stanford researchers designed a study around a recently discovered molecule known as CD47, a protein expressed on the surface of all cells, and how it interacts with macrophages, white blood cells that kill abnormal cells. "Think of the macrophages as the Pac-Man of the immune system," Samuel Cheshier, lead study author and assistant professor of neurosurgery at Stanford Medicine, tells Mental Floss.

CD47 sends the immune system's macrophages a "don't eat me" signal. Cancer cells fool the immune system into not destroying them by secreting high amounts of CD47. When Cheshier and his team blocked the CD47 signals on cancer cells, the macrophages could identify the cancer cells and eat them, without toxic side effects to healthy cells. The treatment successfully shrank all five of the common pediatric tumors, without the nasty side effects of chemotherapy.

11. A NEW THERAPY FOR TYPE 1 DIABETES TRICKS THE IMMUNE SYSTEM.

In those with type 1 diabetes, the body attacks its own pancreatic cells, interrupting its normal ability to produce insulin in response to glucose. In a 2016 paper, researchers at MIT, in collaboration with Boston's Children's Hospital, successfully designed a new material that allows them to encapsulate and transplant healthy pancreatic "islet" cells into diabetic mice without triggering an immune response. Made from seaweed, the substance is benign enough that the body doesn't react to it, and porous enough to allow the islet cells to be placed in the abdomen of mice, where they restore the pancreatic function. Senior author Daniel Anderson, an associate professor at MIT, said in a statement that this approach "has the potential to provide [human] diabetics with a new pancreas that is protected from the immune system, which would allow them to control their blood sugar without taking drugs. That's the dream."

12. IMMUNOTHERAPY IS ON THE CUTTING EDGE OF IMMUNE SYSTEM RESEARCH.

Over the last few years, research in the field of immunology has focused on developing cancer treatments using immunotherapy. This method engineers the patient's own normal cells to attack the cancer cells. Vance says the technique could be used for many more conditions. "I feel like that could be just the tip of the iceberg," he says. "If we can understand better what the cancer and immunotherapy is showing, maybe we can go in there and manipulate the immune responses and get good outcomes for other diseases, too."

10 Facts About Your Tonsils

iStock/Neustockimages
iStock/Neustockimages

Most of us only become aware of our tonsils if they become swollen or infected. But these masses of lymphatic tissue in the mouth and throat are important immunological gatekeepers at the start of the airways and digestive tract, grabbing pathogens and warding off diseases before they reach the rest of your body. Here are some essential answers about these often-overlooked tissues—like what to do when your tonsils are swollen, and whether you should get your tonsils removed.

1. People actually have four kinds of tonsils.

The term tonsils usually refers to your palatine tonsils, the ones that can be seen at the back of your throat. But tonsillar tissue also includes the lingual tonsil (located in the base of the tongue), tubal tonsils, and the adenoid tonsil (often just called adenoids). "Collectively, these are referred to as Waldeyer's ring," says Raja Seethala, the director of head and neck pathology at the University of Pittsburgh Medical Center and a member of the College of American Pathologists Cancer Committee.

2. Tonsils are one of the body's first responders to pathogens.

The tonsils are a key barrier to inhaled or ingested pathogens that can cause infection or other harm, Seethala tells Mental Floss. "These pathogens bind to specialized immune cells in the lining—epithelium—to elicit an immune response in the lymphoid T and B cells of the tonsil," he says. Essentially, they help jumpstart your immune response.

3. Adenoid tonsils can obstruct breathing and cause facial deformities.

If the adenoid tonsils are swollen, they can block breathing and clog up your sinus drainage, which can cause sinus and ear infections. If adenoids are too big, it forces a person to breathe through their mouth. In children, frequent mouth breathing has the potential to cause facial deformities by stressing developing facial bones. "If the tonsils are too large and cause airway obstruction, snoring, or obstructive sleep apnea, then removal is important," says Donald Levine, an ear, nose, and throat specialist in Nyack, New York. Fortunately, the adenoids tend to get smaller naturally in adulthood.

4. As many of us know, sometimes tonsils are removed.

Even though your tonsils are part of your immune system, Levine tells Mental Floss, "when they become obstructive or chronically infected, then they need to be removed." The rest of your immune system steps in to handle further attacks by pathogens. Another reason to remove tonsils besides size, Levine says, is "chronic tonsillitis due to the failure of the immune system to remove residual bacteria from the tonsils, despite multiple antibiotic therapies."

5. Tonsillectomies have been performed for thousands of years ...

Tonsil removal is believed to have been a phenomenon for three millennia. The procedure is found in ancient Ayurvedic texts, says Seethala, "making it one of the older documented surgical procedures." But though the scientific understanding of the surgery has changed dramatically since then, "the benefits versus harm of tonsillectomy have been continually debated over the centuries," he says.

6. ... and they were probably quite painful.

The first known reported case of tonsillectomy surgery, according to a 2006 paper in Otorhinolaryngology, is by Cornélio Celsus, a Roman "encylopaediest" and dabbler in medicine, who authored a medical encyclopedia titled Of Medicine in the 1st century BCE. Thanks to his work, we can surmise that a tonsillectomy probably was an agonizing procedure for the patient: "Celsus applied a mixture of vinegar and milk in the surgical specimen to hemostasis [stanch bleeding] and also described his difficulty doing that due to lack of proper anesthesia."

7. Tonsil removal was performed for unlikely reasons.

The same paper reveals that among some of the more outlandish reasons for removing tonsils were conditions like "night enuresis (bed-wetting), convulsions, laryngeal stridor, hoarseness, chronic bronchitis, and asthma."

8. An early treatment for swollen tonsils included frog fat.

As early practitioners struggled to perfect techniques for removing tonsils effectively, another early physician, Aetius de Amida, recommended "ointment, oils, and corrosive formulas with frog fat to treat infections."

9. Modern tonsillectomy is much more sophisticated.

A common technique today for removing the tonsils, according to Levine, is a far cry from the painful early attempts. Under brief general anesthesia, Levine uses a process called coblation. "[It's] a kind of cold cautery, so there is almost no bleeding, less post operative pain, and quicker healing. You can return to normal activities 10 days later," Levine says.

10. Sexually-transmitted HPV can cause tonsil cancer.

The incidence of tonsillar cancers is increasing, according to Seethala. "Unlike other head and neck cancers, which are commonly associated with smoking and alcohol, tonsillar cancers are driven by high-risk human papillomavirus (HPV)," he says. "HPV-related tonsillar cancer can be considered sexually transmitted."

26 Amazing Facts About the Human Body

Mental Floss via YouTube
Mental Floss via YouTube

At some point in your life, you've probably wondered: What is belly button lint, anyway? The answer, according to Mental Floss editor-in-chief Erin McCarthy, is that it's "fibers that rub off of clothing over time." And hairy people are more prone to getting it for a very specific (and kind of gross-sounding) reason. A group of scientists who formed the Belly Button Biodiversity Project in 2011 have also discovered that there's a whole lot of bacteria going on in there.

In this week's all-new edition of The List Show, Erin is sharing 26 amazing facts about the human body, from your philtrum (the dent under your nose) to your feet. You can watch the full episode below.

For more episodes like this one, be sure to subscribe here.

SECTIONS

arrow
LIVE SMARTER