The Top 10 Science Stories of 2017

Mohamed El-Shahed, AFP/Getty Images
Mohamed El-Shahed, AFP/Getty Images

Scientific breakthroughs of 2017 truly spanned a gamut, manifesting themselves in nearly every discipline—cosmology, biology, and anthropology, to name a few. They ranged from astonishing revelations about Jupiter's famous rings to discovering a new continent on our own planet. Human cellular and embryonic sciences were in the limelight: Researchers fixed a disease-causing gene in human embryos in one experiment and grew human cells in pig embryos in another. Here on Earth, scientists achieved the first ever teleportation (of a particle). Far away, cosmic forces forged an enormous amount of gold, literally of galactic proportions—200 times the mass of our planet. Here are the top 10 most notable science stories of 2017.


TRAPPIST-1 planetary system
NASA, Getty Images

We found not one but seven Earth-like planets, out of which three could potentially host life. Orbiting around a cool, dim star 39 light-years from us in the Trappist-1 system, these planets were detected through their eclipses—a brief dimming in their star's brightness when a planet passes in front of it. Although Trappist-1 looks more like Jupiter and its Galilean moons than our own solar system, its seven Earth-sized planets may have "terrestrial" conditions. Three of the planets are located in the habitable zone with their surface temperatures allowing for water oceans and an Earth-like atmosphere to form.

So far, most planet-hunting efforts were focused on brighter stars and bigger planets. Trappist-1 is the first planetary system found to revolve around a smaller, dimmer star—and its discovery holds the potential to uncover many more exoplanets.


Scientists have successfully used a gene-editing technique, CRISPR-Cas9, to clip out a mutated gene in human embryos, replacing it with a healthy copy. Called MYBPC3, the defective gene causes hypertrophic cardiomyopathy, a heart condition that can lead to sudden death in young people. While this was a stunning medical success, the CRISPR-Cas9 technique remains controversial among doctors, ethicists, and sociologists, who are concerned that attempts to build a better human could lead to dismal medical and social outcomes. When the study was published, an international committee of genetics experts issued a statement advising against editing any embryo intended for implantation into future mothers.

A different group of scientists managed to convert CRISPR into a fast, sensitive, and cheap diagnostic instrument for a range of diseases. Called SHERLOCK (for Specific High Sensitivity Enzymatic Reporter UnLOCKing), this method turns CRISPR into a tool that can sniff out specific genetic information, such as abnormal RNA. Surprisingly inexpensive, SHERLOCK can cost less than a buck per sample, and can hunt down the RNA of disease agents like dengue fever or Zika virus, and even search for mutations that can cause cancer.


Larsen C ice shelf
ESA, Getty Images

A giant piece of ice the size of Delaware broke off the Larsen ice shelf on the Antarctic Peninsula, and is now adrift in the Weddell Sea. Weighting a trillion tons, it's one of the largest icebergs ever recorded.

Over the last few decades, the Larsen ice shelf went through major changes. The sections called Larsen A and B collapsed in 1995 and 2002. More recently, a rift along the Larsen C section was detected, and it grew slowly over two years—until it was hanging by a thread, and then finally split off.

The scientists say that while climate change is responsible for melting sea ice around the world, this particular fracture may have been inevitable. Ice shelves naturally break up as they extend further out into the ocean. Neither will the massive iceberg cause a sea level rise as it melts—the same way ice cubes melting in your gin and tonic do not increase the volume of water in that glass.


Purely the stuff of science fiction until now, teleportation became possible this year. Although not yet able to teleport an entire human, Chinese scientists said they managed to teleport a photon particle from the ground to a satellite 870 miles away.

How does it work? Teleportation is transmitting the state of a thing rather than the thing itself. It's not unlike a fax machine, which sends information as various marks on a paper sheet rather than the sheet itself.

If you combine this idea with the concept of quantum entanglement, in which two particles are created at the same time and place, so they effectively have the same existence, you can shoot one of the particles far away, but they will remain entangled—meaning if one changes, its remote twin will change too. So it's not a Star Trek–type of teleportation, where you can transfer objects or people from one place to another, but more like having a doppelganger tethered to you far away.

Instead of sending marks on a paper sheet to a receiving-end fax machine, the Chinese scientists transmitted a bunch of photons. The team created 4000 pairs of quantum-entangled photons and fired one photon from each pair in a beam of light towards a satellite that can detect the quantum states of these single photons sent from the ground.

So why all the excitement if we still can't teleport people? For one thing, quantum teleportation offers possibilities of creating un-hackable communications networks. Any attempts to eavesdrop on a quantum system or intercept the info being sent would cause detectable disturbances.


You'd think Earth was completely mapped out by now, but this year, an international team of scientists discovered an entirely new continent down under. Called Zealandia, this eighth continent broke off Australia millions of years ago, containing New Zealand and New Caledonia, an island further up north. More than 90 percent of Zealandia is underwater, which is why it managed to evade geographers for so long.

The team drilled cores 4000 feet underwater and gathered more than 8000 rock and sediment samples and several hundred fossils. They discovered microscopic remains of organisms that lived in warm, shallow seas as well as spores and pollen from terrestrial plants, revealing that in the past parts of Zealandia used to be above sea level.

Besides their historical importance, these findings will help us understand the planet's future prospects. The fossilized records of Zealandia's past will provide more insight into the movement of Earth's tectonic plates and the global climate system, and contribute to the computer models used to predict future climate flukes.


Using a new type of tomography that employs subatomic particles called muons, scientists generated 3D images of the ancient Egyptian pyramids, including the Great Pyramid of Giza, the biggest in Egypt. The images, generated as part of the ScanPyramids project, an international endeavor launched in 2015, revealed a surprising void, suggesting an inner structure.

Despite being studied for more than a century, the Great Pyramid of Giza, built more than 4500 years ago as a burial place of pharaoh Khufu (a.k.a. Cheops), is still full of mysteries waiting to be discovered. Muons, which are byproducts of cosmic rays, pass through stones better than x-rays or other similar technology do, so they work very well for peeking inside the inaccessible ancient structures. According to the images, the void is at least 100 feet long and bears a structural resemblance to the section directly below it—the pyramid's Grand Gallery, a long area that feels like a "very big cathedral at the center of the monument," as engineer and ScanPyramids co-founder Mehdi Tayoubi described it. The discovery marks the first time a new inner structure has been located in the pyramid since the 19th century.


baby piglet

Researchers from the Salk Institute successfully managed to grow human cells inside pig embryos. The goal was to better understand how to develop functional and transplantable tissue or organs.

The project actually consisted of two parts. During the first part, researchers created a cross between a rat and a mouse by implanting rat cells into mouse embryos. During the second part, the team used the same technique with human cells and non-human animal hosts—such as cows or pigs, since their organs are closer in size to our own. The second feat was harder to achieve since people and pigs are further apart from each other than mice and rats are, and pig embryos develop faster than human ones.

While the experiment was successful, the technology remains very controversial, as many experts fear it could potentially lead to human-animal chimeras.


The Juno mission aimed at exploring Jupiter, which reached the target in 2016, proved that much of what we thought we knew about this planet is wrong. Turns out Jupiter's famous bands do not continue to the north and south poles. Instead, the poles are characterized by chaotic swirls and ovular features, which are Texas-sized ammonia cyclones. Ammonia, which emanates from Jupiter's great depths, plays a role in the planet's atmosphere and weather, but its levels vary greatly between different areas. Scientists still don't know whether Jupiter has a core, but they know that the pressure inside the gas giant is so strong that hydrogen, which normally is a gas, has been squeezed into a metallic fluid. The other mystery Juno may help shed some light on is Jupiter's magnetosphere, which generates spectacular auroras that are different in nature from Earth's Northern Lights.

In September, scientists deliberately sacrificed the Cassini spacecraft, which ran out of fuel after decades-long exploration of our other cosmic neighbor, Saturn. Launched in 1997 and reaching its target seven years later, Cassini tremendously expanded our knowledge about Saturn, its satellites, and our entire solar system. Thanks to Cassini, we assessed the composition of Saturn's rings and discovered that it has six moons. More interestingly, it expanded our assumptions about the habitable planets' range. We learned that a moon named Titan holds methane lakes, which could harbor a different form of life, and may have subsurface water oceans, possibly with hydrothermal vents akin to those in the Earth's undersea crusts. Now that Cassini's mission is over, all eyes are on Juno.


Astronomers watched a never-before-witnessed cosmic phenomenon: two dead stars merging into one. It was a head-on collision of two neutron stars, which are superdense remains of previously exploded stars.

As the two stars smashed into each other in a distant galaxy 130 million light-years from Earth, they emitted gravitational waves which began traveling outward like ripples on a pond. When the waves began their cosmic journey 130 million years ago, Earth was still ruled by dinosaurs, and the complex equipment necessary to observe this phenomenon didn't exist. However, the existence of such waves was predicted by Einstein, so by the time they reached Earth, the scientists were ready with their detectors—two in the United States and one in Italy.

Moments after the detectors noticed the waves, advanced space telescopes registered a high-energy light burst. Hours later, astronomers spotted a bright new point up in the sky, emitting infrared and ultraviolet light, followed by x-rays and radio waves days later. These observations informed scientists about a "kilonova" hypothesis, which postulates that neutron star collisions generate and spew out heavy elements like gold, silver, platinum, and uranium. The blast is believed to have created some 200 Earth-masses of gold, scientists say.


facial reconstruction of 300,000-year-old skull found in Morocco
Gunz et al. in Nature, 2017

Until this year, modern humans were thought to have originated between 150,000 and 200,000 years ago, according to the oldest-known fossils of Homo sapiens found in Ethiopia. But recently unearthed remains of five early H. sapiens were dated at 300,000 years old, making our species 100,000 years older than we thought.

The new fossils were found in Morocco, on the other side of the African continent and further north than Ethiopia. Researchers now think that our ancestors may not have originated in any one specific spot in Africa, but rather evolved across the entire continent.

Before the Sahara became a desert, it sprouted forests and plains, making it possible for early humans to travel across the continent. The early hominids were likely following and hunting herds of gazelles or other animals, evolving new cognitive skills along the way, which enabled them to create more complex tools and develop advanced social behaviors. So as they spread across Africa, these early humans acquired the very traits that later came to define our species.

15 Gripping Facts About Galileo

Getty Images
Getty Images

Albert Einstein once said that the work of Galileo Galilei “marks the real beginning of physics.” And astronomy, too: Galileo was the first to aim a telescope at the night sky, and his discoveries changed our picture of the cosmos. Here are 15 things that you might not know about the father of modern science, who was born February 15, 1564.

1. There's a reason why Galileo Galilei's first name echoes his last name.

You may have noticed that Galileo Galilei’s given name is a virtual carbon-copy of his family name. In her book Galileo’s Daughter, Dava Sobel explains that in Galileo’s native Tuscany, it was customary to give the first-born son a Christian name based on the family name (in this case, Galilei). Over the years, the first name won out, and we’ve come to remember the scientist simply as “Galileo.”

2. Galileo Galilei probably never dropped anything off the leaning tower of Pisa. 

With its convenient “tilt,” the famous tower in Pisa, where Galileo spent the early part of his career, would have been the perfect place to test his theories of motion, and of falling bodies in particular. Did Galileo drop objects of different weights, to see which would strike the ground first? Unfortunately, we have only one written account of Galileo performing such an experiment, written many years later. Historians suspect that if Galileo taken part in such a grand spectacle, there would be more documentation. (However, physicist Steve Shore did perform the experiment at the tower in 2009; I videotaped it and put the results on YouTube.)

3. Galileo taught his students how to cast horoscopes.

It’s awkward to think of the father of modern science mucking about with astrology. But we should keep two things in mind: First, as historians remind us, it’s problematic to judge past events by today’s standards. We know that astrology is bunk, but in Galileo’s time, astrology was only just beginning to disentangle from astronomy. Besides, Galileo wasn’t rich: A professor who could teach astrological methods would be in greater demand than one who couldn’t.

4. Galileo didn't like being told what to do.

Maybe you already knew that, based on his eventual kerfuffle with the Roman Catholic Church. But even as a young professor at the University of Pisa, Galileo had a reputation for rocking the boat. The university’s rules demanded that he wear his formal robes at all times. He refused—he thought it was pretentious and considered the bulky gown a nuisance. So the university docked his pay.

5. Galileo Galilei didn't invent the telescope.

We’re not sure who did, although a Dutch spectacle-maker named Hans Lipperhey often gets the credit (he applied for a patent in the fall of 1608). Within a year, Galileo Galilei obtained one of these Dutch instruments and quickly improved the design. Soon, he had a telescope that could magnify 20 or even 30 times. As historian of science Owen Gingerich has put it, Galileo had managed “to turn a popular carnival toy into a scientific instrument.”

6. A king leaned on Galileo to name planets after him.

Galileo rose to fame in 1610 after discovering, among other things, that the planet Jupiter is accompanied by four little moons, never previously observed (and invisible without telescopic aid). Galileo dubbed them the “Medicean stars” after his patron, Cosimo II of the Medici family, who ruled over Tuscany. The news spread quickly; soon the king of France was asking Galileo if he might discover some more worlds and name them after him.

7. Galileo didn't have trouble with the church for the first two-thirds of his life.

In fact, the Vatican was keen on acquiring astronomical knowledge, because such data was vital for working out the dates of Easter and other holidays. In 1611, when Galileo visited Rome to show off his telescope to the Jesuit astronomers there, he was welcomed with open arms. The future Pope Urban VIII had one of Galileo’s essays read to him over dinner and even wrote a poem in praise of the scientist. It was only later, when a few disgruntled conservative professors began to speak out against Galileo, that things started to go downhill. It got even worse in 1616, when the Vatican officially denounced the heliocentric (sun-centered) system described by Copernicus, which all of Galileo’s observations seemed to support. And yet, the problem wasn’t Copernicanism. More vexing was the notion of a moving Earth, which seemed to contradict certain verses in the Bible.

8. Galileo probably could have earned a living as an artist.

We think of Galileo as a scientist, but his interests—and talents—straddled several disciplines. Galileo could draw and paint as well as many of his countrymen and was a master of perspective—a skill that no doubt helped him interpret the sights revealed by his telescope. His drawings of the Moon are particularly striking. As the art professor Samuel Edgerton has put it, Galileo’s work shows “the deft brushstrokes of a practiced watercolorist”; his images have “an attractive, soft, and luminescent quality.” Edgerton writes of Galileo’s “almost impressionistic technique” more than 250 years before Impressionism developed.

10. Galileo wrote about relativity long before Einstein.

He didn’t write about exactly the same sort of relativity that Einstein did. But Galileo understood very clearly that motion is relative—that is, that your perception of motion has to do with your own movement as well as that of the object you’re looking at. In fact, if you were locked inside a windowless cabin on a ship, you’d have no way of knowing if the ship was motionless, or moving at a steady speed. More than 250 years later, these ideas would be fodder for the mind of the young Einstein.

10. Galileo never married, but that doesn't mean he was alone.

Galileo was very close with a beautiful woman from Venice named Marina Gamba; together, they had two daughters and a son. And yet, they never married, nor even shared a home. Why not? As Dava Sobel notes, it was traditional for scholars in those days to remain single; perceived class difference may also have played a role.

11. You can listen to music composed by Galileo's dad.

Galileo’s father, Vincenzo, was a professional musician and music teacher. Several of his compositions have survived, and you can find modern recordings of them on CD (like this one). The young Galileo learned to play the lute by his father’s side; in time he became an accomplished musician in his own right. His music sense may have aided in his scientific work. With no precision clocks, Galileo was still able to time rolling and falling objects to within mere fractions of a second.

12. His discoveries may have influenced a scene in one of Shakespeare's late plays.

An amusing point of trivia is that Galileo and Shakespeare were born in the same year (1564). By the time Galileo aimed his telescope at the night sky, however, the English playwright was nearing the end of his career. But he wasn’t quite ready to put down the quill: His late play Cymbeline contains what may be an allusion to one of Galileo’s greatest discoveries—the four moons circling Jupiter. In the play’s final act, the god Jupiter descends from the heavens, and four ghosts dance around him in a circle. It could be a coincidence—or, as I suggest in my book The Science of Shakespeare, it could hint at the Bard's awareness of one of the great scientific discoveries of the time.

13. Galileo had some big-name visitors while under house arrest.

Charged with “vehement suspicion of heresy,” Galileo spent the final eight years of his life under house arrest in his villa outside of Florence. But he was able to keep writing and, apparently, to receive visitors, among them two famous Englishmen: the poet John Milton and the philosopher Thomas Hobbes.

14. Galileo's bones have not rested in peace.

When Galileo died in 1642, the Vatican refused to allow his remains to be buried alongside family members in Florence’s Santa Croce Basilica; instead, his bones were relegated to a side chapel. A century later, however, his reputation had improved, and his remains (minus a few fingers) were transferred to their present location, beneath a grand tomb in the basilica’s main chapel. Michelangelo is nearby.

15. Galileo might not have been thrilled with the Vatican's 1992 "apology."

In 1992, under Pope John Paul II, the Vatican issued an official statement admitting that it was wrong to have persecuted Galileo. But the statement seemed to place most of the blame on the clerks and theological advisers who worked on Galileo’s case—and not on Pope Urban VIII, who presided over the trial. Nor was the charge of heresy overturned.

Additional sources: The Discoveries and Opinions of Galileo; Galileo's Daughter; The Cambridge Companion to Galileo.

10 Things You Should Know About Asthma Kozielczyk Kozielczyk

To anyone with asthma, the feeling of an attack is unmistakable. Patients have compared an asthma attack's feeling of breathlessness, caused by inflammation in the lungs and airways, to being smothered by a pillow or having an elephant sit on their chest. Medical experts have already figured out some aspects of asthma, like how to diagnose and treat it, but other components, like what causes asthma and how to cure it, remain unclear. From the triggers people encounter at work to the connection to allergies, here are some facts about asthma symptoms and treatments you should know.

1. Asthma attacks are related to allergies.

The physical process that occurs when someone has a sneezing fit during pollen season is similar to what happens during an asthma attack. But while the former causes discomfort, the latter produces potentially life-threatening symptoms. When people with allergies are exposed to an allergen like pollen, they produce antibodies that bind to that allergen. This signals the body to release the chemicals that cause allergic symptoms. In most people, the symptoms are limited to the head, such as a runny nose or watery eyes, but in people with asthma, they're felt in the lungs. If the lungs are inflamed, the airways that carry air swell up and fill with mucus, constricting airflow and causing common asthma symptoms like coughing, wheezing, and shortness of breath. Such asthma attacks can be fatal when patients can’t get enough air to their lungs.

2. Asthma is the most prevalent chronic disease among children.

Asthma is common, affecting 25 million in the U.S. alone, and of those patients, about 7 million are children. Most people with the disease develop it during childhood. Asthma is the most prevalent chronic illness among kids, and each year, students miss 13.8 million school days because of it.

3. Asthma may be inherited.

Doctors aren’t entirely sure what causes asthma, but they know it sometimes runs in families. A 2010 study found that people with one parent with the condition were nearly twice as likely to have it themselves, and people with a parent and a grandparent with asthma were four times more likely to develop it. Because asthma is connected to allergies, a genetic disposition toward allergies, known as atopy, may explain some inherited asthma cases.

4. Asthma is surprisingly easy to diagnose.

One of the simplest ways to diagnose asthma is through a lung function test. If a patient is reporting asthma symptoms (coughing, chest tightness, a feeling of not getting enough air), their doctor may check the strength of their exhalations before and after having them use an inhaler. If their breathing improves with the medicine, they likely have asthma. An X-ray of the patient’s chest can also be used to reach an asthma diagnosis.

5. Kids who grow up around germs are less likely to have asthma.

A person’s environment early in life may also play a role in whether or not they develop asthma. People who grew up in rural areas, around animals, and in large families are less likely to have asthma than those who did not. One possible explanation is the hygiene hypothesis: According to this theory, kids who were exposed to germs and pathogens while their immune systems were developing are better equipped to deal with allergens, while kids who were sheltered from germs may be more likely to have an exaggerated (and in the case of asthma, potentially deadly) immune response to harmless substances. The hygiene hypothesis hasn’t been proven, however, and it’s definitely not an excuse to expose children to infections in an attempt to strengthen them against asthma attacks in the future.

6. Asthma triggers are everywhere.

To manage their symptoms, doctors tell asthma patients to limit exposure to their triggers when possible. Common asthma triggers include irritants and allergens like dust, tobacco smoke, car exhaust, mold, pet dander, and smoke from burning wood. Triggers that don’t come from the environment, like colds, sinus infections, acid reflux, and hyperventilation brought on by stress, can be even harder to avoid.

7. There's one asthma trigger patients shouldn't avoid.

Physical activity causes fast breathing, which can provoke asthma attacks in some people with the condition. There’s even a type of asthma called exercise-induced bronchoconstriction that specifically describes people who suffer from these kinds of attacks. But the risks of living a sedentary lifestyle outweigh those of exercising carefully, even with asthma. Instead of cutting out cardio altogether, doctors work with patients to come up with an exercise plan that’s safe for them. This might include warming up and using an inhaler before working out, practicing cool-down activities afterward, and wearing scarves or masks to limit exposure to irritants that may also trigger asthma symptoms.

8. There are two types of asthma treatments.

Long-term controllers and quick-relievers are the two types of medications used to treat asthma. Immediate medicines like short-acting beta agonists and anticholinergics relax muscles in the airways when flare-ups occur, and they’re typically administered directly to the lungs with an inhaler. Long-term medications help keep asthma symptoms under control over time are taken as often as once a day, regardless of whether symptoms are present. They include inhaled long-acting beta agonists and corticosteroids, biologic injections, and theophylline and leukotriene modifier pills and liquids. All of these medications suppress asthma symptoms by either relaxing muscles, reducing swelling, or preventing inflammation in the airways.

9. Asthma can be an occupational hazard.

Occupational asthma develops when a patient’s triggers come from their work environment. According to the National Institutes of Health, wood dust, grain dust, animal dander, fungi, and various chemicals are some of the most common asthma triggers that patients encounter in the workplace. Bakers, farmers, laboratory workers, millers, and woodworkers predisposed to asthma are all at higher risk.

10. There's no cure for asthma, but symptoms can lessen over time.

Though asthma is treatable, there’s no cure for the chronic illness. Some people, however, do appear to grow out of the condition after suffering from it as kids. It’s possible for asthma symptoms to become less severe and go into remission as patients get older, but once someone is diagnosed with asthma, the risk of an episode never goes away completely. Changes in hormone levels are a factor that could possibly bring asthma symptoms back in patients who haven’t experienced an attack in years.