How Real-Life Science Inspired Mary Shelley's Frankenstein

Mary Wollstonecraft Shelley (1797–1851)
Mary Wollstonecraft Shelley (1797–1851)
Hulton Archive/Getty Images

Mary Shelley's Frankenstein, published 200 years ago this year, is often called the first modern work of science fiction. It's also become a fixture of pop culture—so much so that even people who haven't read it know (or think they know) the story: An ambitious young scientist named Victor Frankenstein creates a grotesque but vaguely human creature from the spare parts of corpses, but he loses control of his creation, and chaos ensues. It's a wildly inventive tale, one that flowed from an exceptional young woman's imagination and, at the same time, reflected the anxieties over new ideas and new scientific knowledge that were about to transform the very fabric of life in the 19th century.

The woman we remember as Mary Shelley was born Mary Wollstonecraft Godwin, the daughter of political philosopher William Godwin and philosopher and feminist Mary Wollstonecraft (who tragically died shortly after Mary's birth). Hers was a hyper-literate household attuned to the latest scientific quests, and her parents (Godwin soon remarried) hosted many intellectual visitors. One was a scientist and inventor named William Nicholson, who wrote extensively on chemistry and on the scientific method. Another was the polymath Erasmus Darwin, grandfather of Charles.

At just 16 years old, Mary ran off with poet and philosopher Percy Bysshe Shelley, who was married at the time. A Cambridge graduate, Percy was a keen amateur scientist who studied the properties of gases and the chemical make-up of food. He was especially interested in electricity, even performing an experiment reminiscent of Benjamin Franklin's famous kite test.

The genesis of Frankenstein can be traced back to 1816, when the couple spent the summer at a country house on Lake Geneva, in Switzerland. Lord Byron, the famous poet, was in a villa nearby, accompanied by a young doctor friend, John Polidori. The weather was miserable that summer. (We now know the cause: In 1815, Mount Tambora in Indonesia erupted, spewing dust and smoke into the air which then circulated around the world, blotting out the Sun for weeks on end, and triggering widespread crop failure; 1816 became known as the "year without a summer.")

Mary and her companions—including her infant son, William, and her step-sister, Claire Clairmont—were forced to spend their time indoors, huddled around the fireplace, reading and telling stories. As storm after storm raged outside, Byron proposed that they each write a ghost story. A few of them tried; today, Mary's story is the one we remember.

THE SCIENCE THAT INSPIRED SHELLEY

lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein
A lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein, inspired by Shelley's novel.
Wikimedia Commons // Public Domain

Frankenstein is, of course, a work of fiction, but a good deal of real-life science informed Shelley's masterpiece, beginning with the adventure story that frames Victor Frankenstein's tale: that of Captain Walton's voyage to the Arctic. Walton hopes to reach the North Pole (a goal that no one would achieve in real life for almost another century) where he might "discover the wondrous power that attracts the needle"—referring to the then-mysterious force of magnetism. The magnetic compass was a vital tool for navigation, and it was understood that the Earth itself somehow functioned like a magnet; however, no one could say how and why compasses worked, and why the magnetic poles differed from the geographical poles.

It's not surprising that Shelley would have incorporated this quest into her story. "The links between electricity and magnetism was a major subject of investigation during Mary's lifetime, and a number of expeditions departed for the North and South Poles in the hopes of discovering the secrets of the planet's magnetic field," writes Nicole Herbots in the 2017 book Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds

Victor recounts to Walton that, as a student at the University of Ingolstadt (which still exists), he was drawn to chemistry, but one of his instructors, the worldly and affable Professor Waldman, encouraged him to leave no branch of science unexplored. Today scientists are highly specialized, but a scientist in Shelley's time might have a broad scope. Waldman advises Victor: "A man would make but a very sorry chemist if he attended to that department of human knowledge alone. If your wish is to become really a man of science, and not merely a petty experimentalist, I should advise you to apply to every branch of natural philosophy, including mathematics."

But the topic that most commands Victor's attention is the nature of life itself: "the structure of the human frame, and, indeed, any animal endued with life. Whence, I often asked myself, did the principle of life proceed?" It is a problem that science is on the brink of solving, Victor says, "if cowardice or carelessness did not restrain our inquiries."

In the era that Shelley wrote these words, the subject of what, exactly, differentiates living things from inanimate matter was the focus of impassioned debate. John Abernethy, a professor at London's Royal College of Surgeons, argued for a materialist account of life, while his pupil, William Lawrence, was a proponent of "vitalism," a kind of life force, an "invisible substance, analogous to on the one hand to the soul and on the other to electricity."

Another key thinker, the chemist Sir Humphry Davy, proposed just such a life force, which he imagined as a chemical force similar to heat or electricity. Davy's public lectures at the Royal Institution in London were a popular entertainment, and the young Shelley attended these lectures with her father. Davy remained influential: in October 1816, when she was writing Frankenstein almost daily, Shelley noted in her diary that she was simultaneously reading Davy's Elements of Chemical Philosophy.

Davy also believed in the power of science to improve the human condition—a power that had only just been tapped. Victor Frankenstein echoes these sentiments: Scientists "have indeed performed miracles," he says. "They penetrate into the recesses of Nature, and show how she works in her hiding-places. They ascend into the heavens; they have discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and almost unlimited Powers …"

Victor pledges to probe even further, to discover new knowledge: "I will pioneer a new way, explore unknown Powers, and unfold to the world the deepest mysteries of Creation."

FROM EVOLUTION TO ELECTRICITY

Closely related to the problem of life was the question of "spontaneous generation," the (alleged) sudden appearance of life from non-living matter. Erasumus Darwin was a key figure in the study of spontaneous generation. He, like his grandson Charles, wrote about evolution, suggesting that all life descended from a single origin.

Erasmus Darwin is the only real-life scientist to be mentioned by name in the introduction to Shelley's novel. There, she claims that Darwin "preserved a piece of vermicelli in a glass case, till by some extraordinary means it began to move with a voluntary motion." She adds: "Perhaps a corpse would be re-animated; galvanism had given token of such things: perhaps the component parts of a creature might be manufactured, brought together, and endured with vital warmth." (Scholars note that "vermicelli" could be a misreading of Vorticellae—microscopic aquatic organisms that Darwin is known to have worked with; he wasn't bringing Italian pasta to life.)

Victor pursues his quest for the spark of life with unrelenting zeal. First he "became acquainted with the science of anatomy: but this was not sufficient; I must also observe the natural decay and corruption of the human body." He eventually succeeds "in discovering the cause of the generation of life; nay, more, I became myself capable of bestowing animation upon lifeless matter."

page from original draft of Frankenstein
A page from the original draft of Frankenstein.
Wikimedia Commons // Public Domain

To her credit, Shelley does not attempt to explain what the secret is—better to leave it to the reader's imagination—but it is clear that it involves the still-new science of electricity; it is this, above all, which entices Victor.

In Shelley's time, scientists were just beginning to learn how to store and make use of electrical energy. In Italy, in 1799, Allesandro Volta had developed the "electric pile," an early kind of battery. A little earlier, in the 1780s, his countryman Luigi Galvani claimed to have discovered a new form of electricity, based on his experiments with animals (hence the term "galvanism" mentioned above). Famously, Galvani was able to make a dead frog's leg twitch by passing an electrical current through it.

And then there's Giovanni Aldini—a nephew of Galvani—who experimented with the body of a hanged criminal, in London, in 1803. (This was long before people routinely donated their bodies to science, so deceased criminals were a prime source of research.) In Shelley's novel, Victor goes one step further, sneaking into cemeteries to experiment on corpses: "… a churchyard was to me merely the receptacle of bodies deprived of life … Now I was led to examine the cause and progress of this decay, and forced to spend days and nights in vaults and charnel-houses."

Electrical experimentation wasn't just for the dead; in London, electrical "therapies" were all the rage—people with various ailments sought them out, and some were allegedly cured. So the idea that the dead might come back to life through some sort of electrical manipulation struck many people as plausible, or at least worthy of scientific investigation.

One more scientific figure deserves a mention: a now nearly forgotten German physiologist named Johann Wilhelm Ritter. Like Volta and Galvani, Ritter worked with electricity and experimented with batteries; he also studied optics and deduced the existence of ultraviolet radiation. Davy followed Ritter's work with interest. But just as Ritter was making a name for himself, something snapped. He grew distant from his friends and family; his students left him. In the end he appears to have had a mental breakdown. In The Age of Wonder, author Richard Holmes writes that this now-obscure German may have been the model for the passionate, obsessive Victor Frankenstein.

A CAUTIONARY TALE ABOUT HUMAN NATURE, NOT SCIENCE

Plate from 1922 edition of Frankenstein
A Plate from 1922 edition of Frankenstein.
Wikimedia Commons // Public Domain

In time, Victor Frankenstein came to be seen as the quintessential mad scientist, the first example of what would become a common Hollywood trope. Victor is so absorbed by his laboratory travails that he failed to see the repercussions of his work; when he realizes what he has unleashed on the world, he is overcome with remorse.

And yet scholars who study Shelley don't interpret this remorse as evidence of Shelley's feelings about science as a whole. As the editors of Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds write, "Frankenstein is unequivocally not an antiscience screed."

We should remember that the creature in Shelley's novel is at first a gentle, amicable being who enjoyed reading Paradise Lost and philosophizing on his place in the cosmos. It is the ill-treatment he receives at the hands of his fellow citizens that changes his disposition. At every turn, they recoil from him in horror; he is forced to live the life of an outcast. It is only then, in response to cruelty, that his killing spree begins.

"Everywhere I see bliss, from which I alone am irrevocably excluded," the creature laments to his creator, Victor. "I was benevolent and good—misery made me a fiend. Make me happy, and I shall again be virtuous."

But Victor does not act to ease the creature's suffering. Though he briefly returns to his laboratory to build a female companion for the creature, he soon changes his mind and destroys this second being, fearing that "a race of devils would be propagated upon the earth." He vows to hunt and kill his creation, pursuing the creature "until he or I shall perish in mortal conflict."

Victor Frankenstein's failing, one might argue, wasn't his over-zealousness for science, or his desire to "play God." Rather, he falters in failing to empathize with the creature he created. The problem is not in Victor's head but in his heart.

How to Cook a Turkey for Thanksgiving, According to the Experts

iStock.com/mphillips007
iStock.com/mphillips007

In a letter written to his daughter Sally in 1784, two years after the bald eagle was chosen as the country’s national emblem, Ben Franklin referred to the species as a “bird of bad moral character” that steals fish from weaker birds. A turkey, he argued, was a “much more respectable bird.”

But many Americans have a difficult time cooking turkey. Despite their fine moral fiber, turkeys have a reputation for being among the trickiest of birds to prepare. They're big and bulky, and cooking turkey to a safe temperature can easily dry out the meat. Techniques like brining and spatchcocking—essentially snapping the turkey’s spine in order to lay it flat—are best left to advanced chefs. So how can holiday hosts cook turkey to everyone’s satisfaction?

GET TO KNOW YOUR THANKSGIVING TURKEY

A turkey is placed into an oven
iStock.com/GMVozd

It helps to understand what kind of fowl you’re dealing with. “The average Thanksgiving turkey is 12 or 14 pounds,” says Guy Crosby, Ph.D., an adjunct associate professor of nutrition at the Harvard School of Public Health. “That’s opposed to a 3- or 4-pound chicken. And dark meat tends to need a higher temperature to cook than white meat, which runs the risk of drying out the breast when you’re trying to get the rest of it cooked. People also want a nice, crisp brown skin. Balancing all of that with safety is a big challenge.”

Undercooking a turkey can be problematic, particularly if you’d prefer not to serve up a Petri dish of Salmonella to guests. The bacteria that causes food poisoning and all its unpleasant symptoms is commonly found in poultry and has even led to a recent 35-state outbreak of illness due to contaminated raw turkey products that were apparently mishandled by consumers. The good news? Cooking turkey to an internal temperature of 165°F will kill any germs lurking inside.

Still, you want to be careful in how you handle your raw materials. According to Sue Smith, co-director of the Butterball Turkey-Talk Line, you should avoid washing the turkey. “We don’t recommend it because there’s no reason,” Smith tells Mental Floss. “You don’t want [contaminated] water to splatter around the countertops.”

BRINE A TURKEY UNDER ITS SKIN

If you bought your turkey frozen, let it thaw breast-side up for four days in your refrigerator. (A good rule of thumb is one day for every four pounds of weight.) Place the bird in a pan and put it on the bottom shelf so no juices leak on to other shelves or into food.

Once it’s thawed, you can consider an additional step, and one that might make for a juicier bird. Rather than brine the entire turkey—which allows it to soak up saltwater to retain more moisture during cooking—you can opt to moisten the meat with a 1:1 salt and sugar mixture under the skin.

“Turkeys are so darn big that brining it is not something you can do conveniently in a fridge,” Crosby tells Mental Floss. “If you want to add salt to a turkey, the general recommendation is to salt it under the skin.” Crosby advises to use the salt and sugar blend anywhere meat is prone to drying out, like the breast. Let it rest in the fridge for 24 hours, uncovered. (That’s one day in addition to thawing. But check to make sure your turkey didn’t already come pre-brined.)

This accomplishes a few things. By adding salt to the meat, you’re going to let the meat retain more moisture than it would normally. (Cooking effectively squeezes water from muscle tissue, wringing the bird of its natural moisture.) By leaving it uncovered in the fridge, you’re letting the skin get a little dry. That, Crosby says, can encourage the Maillard reaction, a chemical response to heat in excess of 300 degrees that transforms amino acids and sugar, resulting in a tasty brown skin.

Once your bird is ready for roasting, Smith advises you to place the bird on a flat, shallow pan with a rack that raises it 2 or 3 inches. “The rack lets airflow get around the bottom,” she says. If you don’t have a flat rack, you can use carrots, celery, or even rolled tin foil to give the turkey a little boost off the pan.

COOK TURKEY TO A SAFE TEMPERATURE

Sliced turkey is served on a plate
iStock.com/cobraphoto

A 12- to 14-pound turkey will need to roast for roughly 3 hours at 350°F in order to cook thoroughly. But you’ll want to be sure by using a food thermometer. Both Smith and Crosby caution against trusting the disposable pop-up thermometers that come pre-inserted in some turkeys. Invest in a good oven-safe meat thermometer and plunge it right into the deepest space between the drumstick and thigh and get it to a safe 175 to 180 degrees. (The USDA's Food Safety and Inspection Service recommends heating it to no less than 165 degrees.) “By that point, the breast will be over 180 degrees,” Crosby says. If you’ve stuffed the turkey—and roughly half of people do, according to Butterball research—make sure it’s cooked to a temperature of at least 165 degrees.

Once your bird is done, let it sit out for 35 to 45 minutes. The turkey will retain enough heat that it won’t get cold (don't cover it with tin foil, because the crispy skin will get soggy). Instead, a cooling-off period allows the muscle fibers to reabsorb juices and the salt and sugar to bring out more of the flavor.

REHEAT LEFTOVER TURKEY SLOWLY

When it’s time to put the leftovers away, be sure to keep slicing. Individual portions will cool down more quickly than if you shoved the entire bird into the fridge. Eat them within two or three days. If you want to keep it from drying out during reheating, Crosby suggests putting the meat into a covered baking dish with some vegetables, potatoes, or gravy and using the oven on low heat or a saucepan on the stovetop. “You’ll retain more moisture the slower you reheat it,” he says.

Roasting isn’t the only approach, as some of your friends or family members may attest. In addition to the brutal triumph of spatchcocking, some people opt to deep-fry turkeys, grill them, or slice them up into pieces prior to cooking. There’s no wrong way, but roasting will give you the most predictable results.

“Roasting is Butterball’s preferred method,” Smith says. “It consistently turns out a tender, juicy turkey.” Or, as Ben Franklin would say, a much more respectable bird.

6 Factors That Determine Whether or Not You Remember Your Dreams

iStock
iStock

Within the scientific community, dreams are still something of a mystery. Many experiments have been conducted and many theories have been put forth, but researchers still don’t fully understand why or how we dream. Further complicating matters is the fact that everyone dreams, but some people never remember their subconscious escapades.

However, improvements in brain imaging and recent physiological studies have brought us one step closer to answering the question of why some people remember their dreams more than others. There’s no simple, definitive explanation, “but there are a number of things that correlate,” Dr. Deirdre Leigh Barrett, a psychology professor at Harvard Medical School and author of The Committee of Sleep, tells Mental Floss. Barrett shared a few of the factors that can affect your dream recall.

1. SEX

Women, on average, recall more dreams than men. Researchers aren’t exactly sure why, but Barrett says it could be a biological or hormonal difference. Alternatively, women might be more cognizant of their dreams because they tend to be more interested in dreams in general. However, Barrett notes that differences between men and women in regard to dream recall are “modest” and that there are greater differences within each sex than between the sexes. In other words: There are plenty of women with low dream recall and plenty of men with high dream recall.

2. AGE

As we get older, it often gets harder to recall our dreams. Your ability to remember dreams improves in late childhood and adolescence, and tends to peak in your twenties, Barrett says. After that point, people often experience a gradual drop-off in dream recall. However, there are exceptions, and people sometimes experience the opposite.

3. PERSONALITY

Again, this is by no means a prescriptive rule, but there seems to be a correlation between certain personality traits and high dream recall. "More psychologically-minded people tend to have higher dream recall, and people who are more practical and externally focused tend to have lower recall," Barrett says. In addition, better dream recall has a “mild correlation” with better recall while completing certain memory tasks during waking hours, according to Barrett.

4. AMOUNT OF SLEEP

The amount of sleep one gets on average is one of the most important factors related to dream recall. People dream every 90 minutes during the REM (rapid eye movement) sleep cycle. However, those REM periods get longer throughout the night, meaning that you’re doing the most dreaming toward the morning—generally right before you wake up. If you only sleep four hours instead of eight, you’re only getting about 20 percent of your dream time. For this reason, some people report remembering more of their dreams on the weekend, when they have the chance to catch up on sleep.

5. BRAIN ACTIVITY

Thanks to brain imaging, scientists now have a better idea of which parts of the brain are associated with dreaming. A part of the brain that processes information and emotions is more active in people who remember their dreams more often, according to a 2014 study. This region toward the back of the brain, called the temporo-parietal junction (TPJ), may help people pay more attention to external stimuli. In turn, this may promote something called instrasleep wakefulness.

"This may explain why high dream recallers are more reactive to environmental stimuli, awaken more during sleep, and thus better encode dreams in memory than low dream recallers," Dr. Perrine Ruby told the International Business Times. "Indeed, the sleeping brain is not capable of memorizing new information; it needs to awaken to be able to do that."

Higher activity in the TPJ and another region of the brain called the medial prefrontal cortex (MPFC) might also "promote the mental imagery and/or memory encoding of dreams," researchers wrote in the study's abstract.

More recently, in 2017, researchers discovered that high dream recall is also linked to higher activity toward the front of the brain. The pre-frontal cortex is the part of the brain that deals with abstract thinking, so it makes sense that it has been linked to dream recall and lucid dreaming (being aware that one is dreaming), Barrett says.

6. RESPONSE TO EXTERNAL STIMULI

In a similar vein, people who remember their dreams more frequently also tend to exhibit more brain activity after hearing their name spoken aloud while they’re awake, according to a 2013 study. Upon hearing their names, a group of “high recallers,” who remember their dreams almost every night, experienced a greater decrease in a brain wave called the alpha wave than a group of “low recallers,” who remember their dreams once or twice a month. This decrease in alpha waves is likely preceded by an increase in brain activity upon hearing their names. Essentially, people with greater dream recall tend to experience activity in more regions of their brain in response to sounds. According to Barrett, there may be an evolutionary explanation for this.

“Evolution wants us to get restorative sleep but it also wanted us to wake up to danger and check it out and be able to go back to sleep quickly afterwards,” she says. Think of the all the dangers our prehistoric ancestors had to deal with, and it's clear that this response is important for survival. In essence, high recallers are “probably just a little more aware and watching during their dream, and that helps make it a long-term memory.”

So what can you do to help you remember your dreams? It may sound simple, but before you go to bed, think to yourself, “I’m going to remember my dreams tonight.” The very act of thinking about dreaming can make a big difference.

“You could say that just reading this article is somewhat more likely to make you recall a dream tonight,” Barrett says. “People who are taking a class on dreams or reading a book on dreams—any short-term intervention of paying more attention to them—tends to create a short-term blip in dream recall.”

When you first wake up, don’t do anything except lie in bed and try to recall any dreams you had. If something comes back to you, write it down or use a voice recorder to crystallize your thoughts. Dreams are still in your short-term memory when you wake up, so they’re fragile and easy to forget.

If you don’t remember anything, Barrett says it’s still helpful to assess how you feel when you first awaken. Are you happy, sad, or anxious? “Sometimes if you just stay with whatever emotion or little bit of content you woke up with,” she says, “a dream will come rushing back.”

SECTIONS

arrow
LIVE SMARTER