How Real-Life Science Inspired Mary Shelley's Frankenstein

Mary Wollstonecraft Shelley (1797–1851)
Mary Wollstonecraft Shelley (1797–1851)
Hulton Archive/Getty Images

Mary Shelley's Frankenstein, published 200 years ago this year, is often called the first modern work of science fiction. It's also become a fixture of pop culture—so much so that even people who haven't read it know (or think they know) the story: An ambitious young scientist named Victor Frankenstein creates a grotesque but vaguely human creature from the spare parts of corpses, but he loses control of his creation, and chaos ensues. It's a wildly inventive tale, one that flowed from an exceptional young woman's imagination and, at the same time, reflected the anxieties over new ideas and new scientific knowledge that were about to transform the very fabric of life in the 19th century.

The woman we remember as Mary Shelley was born Mary Wollstonecraft Godwin, the daughter of political philosopher William Godwin and philosopher and feminist Mary Wollstonecraft (who tragically died shortly after Mary's birth). Hers was a hyper-literate household attuned to the latest scientific quests, and her parents (Godwin soon remarried) hosted many intellectual visitors. One was a scientist and inventor named William Nicholson, who wrote extensively on chemistry and on the scientific method. Another was the polymath Erasmus Darwin, grandfather of Charles.

At just 16 years old, Mary ran off with poet and philosopher Percy Bysshe Shelley, who was married at the time. A Cambridge graduate, Percy was a keen amateur scientist who studied the properties of gases and the chemical make-up of food. He was especially interested in electricity, even performing an experiment reminiscent of Benjamin Franklin's famous kite test.

The genesis of Frankenstein can be traced back to 1816, when the couple spent the summer at a country house on Lake Geneva, in Switzerland. Lord Byron, the famous poet, was in a villa nearby, accompanied by a young doctor friend, John Polidori. The weather was miserable that summer. (We now know the cause: In 1815, Mount Tambora in Indonesia erupted, spewing dust and smoke into the air which then circulated around the world, blotting out the Sun for weeks on end, and triggering widespread crop failure; 1816 became known as the "year without a summer.")

Mary and her companions—including her infant son, William, and her step-sister, Claire Clairmont—were forced to spend their time indoors, huddled around the fireplace, reading and telling stories. As storm after storm raged outside, Byron proposed that they each write a ghost story. A few of them tried; today, Mary's story is the one we remember.

THE SCIENCE THAT INSPIRED SHELLEY

lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein
A lithograph for the 1823 production of the play Presumption; or, the Fate of Frankenstein, inspired by Shelley's novel.
Wikimedia Commons // Public Domain

Frankenstein is, of course, a work of fiction, but a good deal of real-life science informed Shelley's masterpiece, beginning with the adventure story that frames Victor Frankenstein's tale: that of Captain Walton's voyage to the Arctic. Walton hopes to reach the North Pole (a goal that no one would achieve in real life for almost another century) where he might "discover the wondrous power that attracts the needle"—referring to the then-mysterious force of magnetism. The magnetic compass was a vital tool for navigation, and it was understood that the Earth itself somehow functioned like a magnet; however, no one could say how and why compasses worked, and why the magnetic poles differed from the geographical poles.

It's not surprising that Shelley would have incorporated this quest into her story. "The links between electricity and magnetism was a major subject of investigation during Mary's lifetime, and a number of expeditions departed for the North and South Poles in the hopes of discovering the secrets of the planet's magnetic field," writes Nicole Herbots in the 2017 book Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds

Victor recounts to Walton that, as a student at the University of Ingolstadt (which still exists), he was drawn to chemistry, but one of his instructors, the worldly and affable Professor Waldman, encouraged him to leave no branch of science unexplored. Today scientists are highly specialized, but a scientist in Shelley's time might have a broad scope. Waldman advises Victor: "A man would make but a very sorry chemist if he attended to that department of human knowledge alone. If your wish is to become really a man of science, and not merely a petty experimentalist, I should advise you to apply to every branch of natural philosophy, including mathematics."

But the topic that most commands Victor's attention is the nature of life itself: "the structure of the human frame, and, indeed, any animal endued with life. Whence, I often asked myself, did the principle of life proceed?" It is a problem that science is on the brink of solving, Victor says, "if cowardice or carelessness did not restrain our inquiries."

In the era that Shelley wrote these words, the subject of what, exactly, differentiates living things from inanimate matter was the focus of impassioned debate. John Abernethy, a professor at London's Royal College of Surgeons, argued for a materialist account of life, while his pupil, William Lawrence, was a proponent of "vitalism," a kind of life force, an "invisible substance, analogous to on the one hand to the soul and on the other to electricity."

Another key thinker, the chemist Sir Humphry Davy, proposed just such a life force, which he imagined as a chemical force similar to heat or electricity. Davy's public lectures at the Royal Institution in London were a popular entertainment, and the young Shelley attended these lectures with her father. Davy remained influential: in October 1816, when she was writing Frankenstein almost daily, Shelley noted in her diary that she was simultaneously reading Davy's Elements of Chemical Philosophy.

Davy also believed in the power of science to improve the human condition—a power that had only just been tapped. Victor Frankenstein echoes these sentiments: Scientists "have indeed performed miracles," he says. "They penetrate into the recesses of Nature, and show how she works in her hiding-places. They ascend into the heavens; they have discovered how the blood circulates, and the nature of the air we breathe. They have acquired new and almost unlimited Powers …"

Victor pledges to probe even further, to discover new knowledge: "I will pioneer a new way, explore unknown Powers, and unfold to the world the deepest mysteries of Creation."

FROM EVOLUTION TO ELECTRICITY

Closely related to the problem of life was the question of "spontaneous generation," the (alleged) sudden appearance of life from non-living matter. Erasumus Darwin was a key figure in the study of spontaneous generation. He, like his grandson Charles, wrote about evolution, suggesting that all life descended from a single origin.

Erasmus Darwin is the only real-life scientist to be mentioned by name in the introduction to Shelley's novel. There, she claims that Darwin "preserved a piece of vermicelli in a glass case, till by some extraordinary means it began to move with a voluntary motion." She adds: "Perhaps a corpse would be re-animated; galvanism had given token of such things: perhaps the component parts of a creature might be manufactured, brought together, and endured with vital warmth." (Scholars note that "vermicelli" could be a misreading of Vorticellae—microscopic aquatic organisms that Darwin is known to have worked with; he wasn't bringing Italian pasta to life.)

Victor pursues his quest for the spark of life with unrelenting zeal. First he "became acquainted with the science of anatomy: but this was not sufficient; I must also observe the natural decay and corruption of the human body." He eventually succeeds "in discovering the cause of the generation of life; nay, more, I became myself capable of bestowing animation upon lifeless matter."

page from original draft of Frankenstein
A page from the original draft of Frankenstein.
Wikimedia Commons // Public Domain

To her credit, Shelley does not attempt to explain what the secret is—better to leave it to the reader's imagination—but it is clear that it involves the still-new science of electricity; it is this, above all, which entices Victor.

In Shelley's time, scientists were just beginning to learn how to store and make use of electrical energy. In Italy, in 1799, Allesandro Volta had developed the "electric pile," an early kind of battery. A little earlier, in the 1780s, his countryman Luigi Galvani claimed to have discovered a new form of electricity, based on his experiments with animals (hence the term "galvanism" mentioned above). Famously, Galvani was able to make a dead frog's leg twitch by passing an electrical current through it.

And then there's Giovanni Aldini—a nephew of Galvani—who experimented with the body of a hanged criminal, in London, in 1803. (This was long before people routinely donated their bodies to science, so deceased criminals were a prime source of research.) In Shelley's novel, Victor goes one step further, sneaking into cemeteries to experiment on corpses: "… a churchyard was to me merely the receptacle of bodies deprived of life … Now I was led to examine the cause and progress of this decay, and forced to spend days and nights in vaults and charnel-houses."

Electrical experimentation wasn't just for the dead; in London, electrical "therapies" were all the rage—people with various ailments sought them out, and some were allegedly cured. So the idea that the dead might come back to life through some sort of electrical manipulation struck many people as plausible, or at least worthy of scientific investigation.

One more scientific figure deserves a mention: a now nearly forgotten German physiologist named Johann Wilhelm Ritter. Like Volta and Galvani, Ritter worked with electricity and experimented with batteries; he also studied optics and deduced the existence of ultraviolet radiation. Davy followed Ritter's work with interest. But just as Ritter was making a name for himself, something snapped. He grew distant from his friends and family; his students left him. In the end he appears to have had a mental breakdown. In The Age of Wonder, author Richard Holmes writes that this now-obscure German may have been the model for the passionate, obsessive Victor Frankenstein.

A CAUTIONARY TALE ABOUT HUMAN NATURE, NOT SCIENCE

Plate from 1922 edition of Frankenstein
A Plate from 1922 edition of Frankenstein.
Wikimedia Commons // Public Domain

In time, Victor Frankenstein came to be seen as the quintessential mad scientist, the first example of what would become a common Hollywood trope. Victor is so absorbed by his laboratory travails that he failed to see the repercussions of his work; when he realizes what he has unleashed on the world, he is overcome with remorse.

And yet scholars who study Shelley don't interpret this remorse as evidence of Shelley's feelings about science as a whole. As the editors of Frankenstein: Annotated for Scientists, Engineers, and Creators of All Kinds write, "Frankenstein is unequivocally not an antiscience screed."

We should remember that the creature in Shelley's novel is at first a gentle, amicable being who enjoyed reading Paradise Lost and philosophizing on his place in the cosmos. It is the ill-treatment he receives at the hands of his fellow citizens that changes his disposition. At every turn, they recoil from him in horror; he is forced to live the life of an outcast. It is only then, in response to cruelty, that his killing spree begins.

"Everywhere I see bliss, from which I alone am irrevocably excluded," the creature laments to his creator, Victor. "I was benevolent and good—misery made me a fiend. Make me happy, and I shall again be virtuous."

But Victor does not act to ease the creature's suffering. Though he briefly returns to his laboratory to build a female companion for the creature, he soon changes his mind and destroys this second being, fearing that "a race of devils would be propagated upon the earth." He vows to hunt and kill his creation, pursuing the creature "until he or I shall perish in mortal conflict."

Victor Frankenstein's failing, one might argue, wasn't his over-zealousness for science, or his desire to "play God." Rather, he falters in failing to empathize with the creature he created. The problem is not in Victor's head but in his heart.

15 Gripping Facts About Galileo

Getty Images
Getty Images

Albert Einstein once said that the work of Galileo Galilei “marks the real beginning of physics.” And astronomy, too: Galileo was the first to aim a telescope at the night sky, and his discoveries changed our picture of the cosmos. Here are 15 things that you might not know about the father of modern science, who was born February 15, 1564.

1. There's a reason why Galileo Galilei's first name echoes his last name.

You may have noticed that Galileo Galilei’s given name is a virtual carbon-copy of his family name. In her book Galileo’s Daughter, Dava Sobel explains that in Galileo’s native Tuscany, it was customary to give the first-born son a Christian name based on the family name (in this case, Galilei). Over the years, the first name won out, and we’ve come to remember the scientist simply as “Galileo.”

2. Galileo Galilei probably never dropped anything off the leaning tower of Pisa. 

With its convenient “tilt,” the famous tower in Pisa, where Galileo spent the early part of his career, would have been the perfect place to test his theories of motion, and of falling bodies in particular. Did Galileo drop objects of different weights, to see which would strike the ground first? Unfortunately, we have only one written account of Galileo performing such an experiment, written many years later. Historians suspect that if Galileo taken part in such a grand spectacle, there would be more documentation. (However, physicist Steve Shore did perform the experiment at the tower in 2009; I videotaped it and put the results on YouTube.)

3. Galileo taught his students how to cast horoscopes.

It’s awkward to think of the father of modern science mucking about with astrology. But we should keep two things in mind: First, as historians remind us, it’s problematic to judge past events by today’s standards. We know that astrology is bunk, but in Galileo’s time, astrology was only just beginning to disentangle from astronomy. Besides, Galileo wasn’t rich: A professor who could teach astrological methods would be in greater demand than one who couldn’t.

4. Galileo didn't like being told what to do.

Maybe you already knew that, based on his eventual kerfuffle with the Roman Catholic Church. But even as a young professor at the University of Pisa, Galileo had a reputation for rocking the boat. The university’s rules demanded that he wear his formal robes at all times. He refused—he thought it was pretentious and considered the bulky gown a nuisance. So the university docked his pay.

5. Galileo Galilei didn't invent the telescope.

We’re not sure who did, although a Dutch spectacle-maker named Hans Lipperhey often gets the credit (he applied for a patent in the fall of 1608). Within a year, Galileo Galilei obtained one of these Dutch instruments and quickly improved the design. Soon, he had a telescope that could magnify 20 or even 30 times. As historian of science Owen Gingerich has put it, Galileo had managed “to turn a popular carnival toy into a scientific instrument.”

6. A king leaned on Galileo to name planets after him.

Galileo rose to fame in 1610 after discovering, among other things, that the planet Jupiter is accompanied by four little moons, never previously observed (and invisible without telescopic aid). Galileo dubbed them the “Medicean stars” after his patron, Cosimo II of the Medici family, who ruled over Tuscany. The news spread quickly; soon the king of France was asking Galileo if he might discover some more worlds and name them after him.

7. Galileo didn't have trouble with the church for the first two-thirds of his life.

In fact, the Vatican was keen on acquiring astronomical knowledge, because such data was vital for working out the dates of Easter and other holidays. In 1611, when Galileo visited Rome to show off his telescope to the Jesuit astronomers there, he was welcomed with open arms. The future Pope Urban VIII had one of Galileo’s essays read to him over dinner and even wrote a poem in praise of the scientist. It was only later, when a few disgruntled conservative professors began to speak out against Galileo, that things started to go downhill. It got even worse in 1616, when the Vatican officially denounced the heliocentric (sun-centered) system described by Copernicus, which all of Galileo’s observations seemed to support. And yet, the problem wasn’t Copernicanism. More vexing was the notion of a moving Earth, which seemed to contradict certain verses in the Bible.

8. Galileo probably could have earned a living as an artist.

We think of Galileo as a scientist, but his interests—and talents—straddled several disciplines. Galileo could draw and paint as well as many of his countrymen and was a master of perspective—a skill that no doubt helped him interpret the sights revealed by his telescope. His drawings of the Moon are particularly striking. As the art professor Samuel Edgerton has put it, Galileo’s work shows “the deft brushstrokes of a practiced watercolorist”; his images have “an attractive, soft, and luminescent quality.” Edgerton writes of Galileo’s “almost impressionistic technique” more than 250 years before Impressionism developed.

10. Galileo wrote about relativity long before Einstein.

He didn’t write about exactly the same sort of relativity that Einstein did. But Galileo understood very clearly that motion is relative—that is, that your perception of motion has to do with your own movement as well as that of the object you’re looking at. In fact, if you were locked inside a windowless cabin on a ship, you’d have no way of knowing if the ship was motionless, or moving at a steady speed. More than 250 years later, these ideas would be fodder for the mind of the young Einstein.

10. Galileo never married, but that doesn't mean he was alone.

Galileo was very close with a beautiful woman from Venice named Marina Gamba; together, they had two daughters and a son. And yet, they never married, nor even shared a home. Why not? As Dava Sobel notes, it was traditional for scholars in those days to remain single; perceived class difference may also have played a role.

11. You can listen to music composed by Galileo's dad.

Galileo’s father, Vincenzo, was a professional musician and music teacher. Several of his compositions have survived, and you can find modern recordings of them on CD (like this one). The young Galileo learned to play the lute by his father’s side; in time he became an accomplished musician in his own right. His music sense may have aided in his scientific work. With no precision clocks, Galileo was still able to time rolling and falling objects to within mere fractions of a second.

12. His discoveries may have influenced a scene in one of Shakespeare's late plays.

An amusing point of trivia is that Galileo and Shakespeare were born in the same year (1564). By the time Galileo aimed his telescope at the night sky, however, the English playwright was nearing the end of his career. But he wasn’t quite ready to put down the quill: His late play Cymbeline contains what may be an allusion to one of Galileo’s greatest discoveries—the four moons circling Jupiter. In the play’s final act, the god Jupiter descends from the heavens, and four ghosts dance around him in a circle. It could be a coincidence—or, as I suggest in my book The Science of Shakespeare, it could hint at the Bard's awareness of one of the great scientific discoveries of the time.

13. Galileo had some big-name visitors while under house arrest.

Charged with “vehement suspicion of heresy,” Galileo spent the final eight years of his life under house arrest in his villa outside of Florence. But he was able to keep writing and, apparently, to receive visitors, among them two famous Englishmen: the poet John Milton and the philosopher Thomas Hobbes.

14. Galileo's bones have not rested in peace.

When Galileo died in 1642, the Vatican refused to allow his remains to be buried alongside family members in Florence’s Santa Croce Basilica; instead, his bones were relegated to a side chapel. A century later, however, his reputation had improved, and his remains (minus a few fingers) were transferred to their present location, beneath a grand tomb in the basilica’s main chapel. Michelangelo is nearby.

15. Galileo might not have been thrilled with the Vatican's 1992 "apology."

In 1992, under Pope John Paul II, the Vatican issued an official statement admitting that it was wrong to have persecuted Galileo. But the statement seemed to place most of the blame on the clerks and theological advisers who worked on Galileo’s case—and not on Pope Urban VIII, who presided over the trial. Nor was the charge of heresy overturned.

Additional sources: The Discoveries and Opinions of Galileo; Galileo's Daughter; The Cambridge Companion to Galileo.

10 Things You Should Know About Asthma

iStock.com/Wojciech Kozielczyk
iStock.com/Wojciech Kozielczyk

To anyone with asthma, the feeling of an attack is unmistakable. Patients have compared an asthma attack's feeling of breathlessness, caused by inflammation in the lungs and airways, to being smothered by a pillow or having an elephant sit on their chest. Medical experts have already figured out some aspects of asthma, like how to diagnose and treat it, but other components, like what causes asthma and how to cure it, remain unclear. From the triggers people encounter at work to the connection to allergies, here are some facts about asthma symptoms and treatments you should know.

1. Asthma attacks are related to allergies.

The physical process that occurs when someone has a sneezing fit during pollen season is similar to what happens during an asthma attack. But while the former causes discomfort, the latter produces potentially life-threatening symptoms. When people with allergies are exposed to an allergen like pollen, they produce antibodies that bind to that allergen. This signals the body to release the chemicals that cause allergic symptoms. In most people, the symptoms are limited to the head, such as a runny nose or watery eyes, but in people with asthma, they're felt in the lungs. If the lungs are inflamed, the airways that carry air swell up and fill with mucus, constricting airflow and causing common asthma symptoms like coughing, wheezing, and shortness of breath. Such asthma attacks can be fatal when patients can’t get enough air to their lungs.

2. Asthma is the most prevalent chronic disease among children.

Asthma is common, affecting 25 million in the U.S. alone, and of those patients, about 7 million are children. Most people with the disease develop it during childhood. Asthma is the most prevalent chronic illness among kids, and each year, students miss 13.8 million school days because of it.

3. Asthma may be inherited.

Doctors aren’t entirely sure what causes asthma, but they know it sometimes runs in families. A 2010 study found that people with one parent with the condition were nearly twice as likely to have it themselves, and people with a parent and a grandparent with asthma were four times more likely to develop it. Because asthma is connected to allergies, a genetic disposition toward allergies, known as atopy, may explain some inherited asthma cases.

4. Asthma is surprisingly easy to diagnose.

One of the simplest ways to diagnose asthma is through a lung function test. If a patient is reporting asthma symptoms (coughing, chest tightness, a feeling of not getting enough air), their doctor may check the strength of their exhalations before and after having them use an inhaler. If their breathing improves with the medicine, they likely have asthma. An X-ray of the patient’s chest can also be used to reach an asthma diagnosis.

5. Kids who grow up around germs are less likely to have asthma.

A person’s environment early in life may also play a role in whether or not they develop asthma. People who grew up in rural areas, around animals, and in large families are less likely to have asthma than those who did not. One possible explanation is the hygiene hypothesis: According to this theory, kids who were exposed to germs and pathogens while their immune systems were developing are better equipped to deal with allergens, while kids who were sheltered from germs may be more likely to have an exaggerated (and in the case of asthma, potentially deadly) immune response to harmless substances. The hygiene hypothesis hasn’t been proven, however, and it’s definitely not an excuse to expose children to infections in an attempt to strengthen them against asthma attacks in the future.

6. Asthma triggers are everywhere.

To manage their symptoms, doctors tell asthma patients to limit exposure to their triggers when possible. Common asthma triggers include irritants and allergens like dust, tobacco smoke, car exhaust, mold, pet dander, and smoke from burning wood. Triggers that don’t come from the environment, like colds, sinus infections, acid reflux, and hyperventilation brought on by stress, can be even harder to avoid.

7. There's one asthma trigger patients shouldn't avoid.

Physical activity causes fast breathing, which can provoke asthma attacks in some people with the condition. There’s even a type of asthma called exercise-induced bronchoconstriction that specifically describes people who suffer from these kinds of attacks. But the risks of living a sedentary lifestyle outweigh those of exercising carefully, even with asthma. Instead of cutting out cardio altogether, doctors work with patients to come up with an exercise plan that’s safe for them. This might include warming up and using an inhaler before working out, practicing cool-down activities afterward, and wearing scarves or masks to limit exposure to irritants that may also trigger asthma symptoms.

8. There are two types of asthma treatments.

Long-term controllers and quick-relievers are the two types of medications used to treat asthma. Immediate medicines like short-acting beta agonists and anticholinergics relax muscles in the airways when flare-ups occur, and they’re typically administered directly to the lungs with an inhaler. Long-term medications help keep asthma symptoms under control over time are taken as often as once a day, regardless of whether symptoms are present. They include inhaled long-acting beta agonists and corticosteroids, biologic injections, and theophylline and leukotriene modifier pills and liquids. All of these medications suppress asthma symptoms by either relaxing muscles, reducing swelling, or preventing inflammation in the airways.

9. Asthma can be an occupational hazard.

Occupational asthma develops when a patient’s triggers come from their work environment. According to the National Institutes of Health, wood dust, grain dust, animal dander, fungi, and various chemicals are some of the most common asthma triggers that patients encounter in the workplace. Bakers, farmers, laboratory workers, millers, and woodworkers predisposed to asthma are all at higher risk.

10. There's no cure for asthma, but symptoms can lessen over time.

Though asthma is treatable, there’s no cure for the chronic illness. Some people, however, do appear to grow out of the condition after suffering from it as kids. It’s possible for asthma symptoms to become less severe and go into remission as patients get older, but once someone is diagnosed with asthma, the risk of an episode never goes away completely. Changes in hormone levels are a factor that could possibly bring asthma symptoms back in patients who haven’t experienced an attack in years.

SECTIONS

arrow
LIVE SMARTER