CLOSE
Keith Holmes/Hakai Institute
Keith Holmes/Hakai Institute

Drone Captures Massive Swarm of Jellyfish Off British Columbia That Weighs More Than 70 Tons

Keith Holmes/Hakai Institute
Keith Holmes/Hakai Institute

Drones have served science in myriad ways, from planting trees to vacuuming marine debris to predicting tornadoes. Now, a team of researchers has used one to measure the size of a massive bloom of jellyfish off the coast of British Columbia, Canada. And it's a monster: According to a new paper in the journal Marine Ecology Progress Series, the huge swarm weighed more than 70 tons.

That's at least 150,000 individual jellies.

"The size of the bloom surprised me. What was exciting was going from not being able to see the bloom easily, if at all, to instantly being able to find them from the air," says co-author Brian Hunt, the Hakai Professor in Oceanography at the University of British Columbia in Vancouver, B.C. "It is remarkable how tightly they group together."

Jellyfish bloom in Pruth Bay, British Columbia
Keith Holmes, Hakai Institute

The bloom is comprised of five species in the Aurelia genus, also known as moon jellies. They're found worldwide (and in aquarium exhibits), often gathering in quiet harbors and bays to feed on plankton, fish larvae, crustaceans, and mollusks.

Hunt and colleague Jessica Schaub conducted their survey in Pruth Bay, a peaceful waterway edged with dense forests, near Calvert Island on the province's central coast, roughly 375 miles north of Seattle. The Hakai Institute, a scientific research institution that supported the survey, faces the bay. The area is within the First Nations territories of the Heiltsuk and Wuikinuxv Nations.

This is the first time a drone has been used to locate and study jellyfish blooms, Hunt tells Mental Floss. Previously, scientists viewed the groups at water level, which provided a limited perspective on their true size and density. The aerial view can help researchers estimate the biomass of jellyfish more accurately and reveal aggregations' behavior, such as their movements in currents or tides.

The team deployed the drone from a research vessel positioned within the mass of invertebrates. While the drone captured aerial images, the researchers also sampled the waters with nets. Then, they compared the drone data and sampling, and estimated that the bloom could weigh anywhere from 70 to as much as 128 tons.

Jellyfish bloom in Pruth Bay, British Columbia
Keith Holmes, Hakai Institute

There isn't much long-term data about the blooms, Hunt says, but those living in the area are familiar with the jellies' appearances in the waterways. "I wouldn’t call these events common, but they are definitely consistent in their timing. We see this happening every four or so years, particularly the local fisherman who catch them as bycatch in their nets," William Housty, chair of the Heiltsuk Integrated Resource Management Department's board of directors, tells Mental Floss.

In the future, drones might help scientists interpret the blooms based on where, when, and how often they occur—as well as how they affect the surrounding ecosystem. Housty says these jellyfish may be following the pattern of warmer waters along the coast.

"We did notice higher numbers during the 2015 marine heatwave and the 2016 El Niño [also a warm event]," Hunt says. "It is possible that changes in the seasonal timing of the jellyfish life cycle might be as or more important than increasing numbers. For example, if jellyfish are more advanced in their life cycle in the spring, they might have a bigger predation impact on herring larvae."

Soon, thanks to aerial imagery, we might know more about the jellies' secret lives.

This story was made possible in part through the Institute for Journalism and Natural Resources.

nextArticle.image_alt|e
iStock
arrow
music
Stradivarius Violins Get Their Distinctive Sound By Mimicking the Human Voice
iStock
iStock

Italian violinist Francesco Geminiani once wrote that a violin's tone should "rival the most perfect human voice." Nearly three centuries later, scientists have confirmed that some of the world's oldest violins do in fact mimic aspects of the human singing voice, a finding which scientists believe proves "the characteristic brilliance of Stradivari violins."

Using speech analysis software, scientists in Taiwan compared the sound produced by 15 antique instruments with recordings of 16 male and female vocalists singing English vowel sounds, The Guardian reports. They discovered that violins made by Andrea Amati and Antonio Stradivari, the pioneers of the instrument, produce similar "formant features" as the singers. The resonance frequencies were similar between Amati violins and bass and baritone singers, while the higher-frequency tones produced by Stradivari instruments were comparable to tenors and contraltos.

Andrea Amati, born in 1505, was the first known violin maker. His design was improved over 100 years later by Antonio Stradivari, whose instruments now sell for several million dollars. "Some Stradivari violins clearly possess female singing qualities, which may contribute to their perceived sweetness and brilliance," Hwan-Ching Tai, an author of the study, told The Guardian.

Their findings were published in the journal Proceedings of the National Academy of Sciences of the United States of America. A 2013 study by Dr. Joseph Nagyvary, a professor emeritus at Texas A&M University, also pointed to a link between the sounds produced by 250-year-old violins and those of a female soprano singer.

According to Vox, a blind test revealed that professional violinists couldn't reliably tell the difference between old violins like "Strads" and modern ones, with most even expressing a preference for the newer instruments. However, the value of these antique instruments can be chalked up to their rarity and history, and many violinists still swear by their exceptional quality.

[h/t The Guardian]

nextArticle.image_alt|e
Phil Walter, Getty Images
arrow
science
How Michael Jackson's Dancing Defied the Laws of Biomechanics
Phil Walter, Getty Images
Phil Walter, Getty Images

From the time he debuted the moonwalk on broadcast television in 1983, Michael Jackson transcended the label of "dancer." His moves seemed to defy gravity as well as the normal limits of human flexibility and endurance.

Now we have some scientific evidence for that. Three neurosurgeons from the Postgraduate Institute of Medical Education and Research in Chandigarh, India, recently published a short paper in the Journal of Neurosurgery: Spine that examines just how remarkable one of Jackson's signature moves really was.

In the 1988 video for "Smooth Criminal" and subsequent live performances, Jackson is seen taking a break from his constant motion to stand in place and lean 45 degrees forward. Both he and his dancers keep their backs straight. Biomechanically, it's not really possible for a human to do. And even though he had a little help, the neurosurgeons found it to be a pretty impressive feat.

An illustration of Michael Jackson's 'Smooth Criminal' dance move.
Courtesy of 'Journal of Neurosurgery: Spine.' Copyright Manjul Tripathi, MCh.

Study co-author Manjul Tripathi told CNN that humans can't lean forward much more than 25 or 30 degrees before they risk landing on their faces. (He knows, because he tried it.) Normally, bending involves using the hip as a fulcrum, and erector spinae muscles to support our trunk. When Jackson leaned over, he transferred the fulcrum to the ankle, with the calf and Achilles tendon under strain. Since that part of the body is not equipped to support leaning that far forward without bending, the "Smooth Criminal" move was really a biomechanical illusion. The act was made possible by Jackson's patented shoe, which had a "catch" built under the heel that allowed him to grasp a protruding support on the stage. Secured to the floor, he was able to achieve a 45-degree lean without falling over.

But the neurosurgeons are quick to point out that the shoes are only part of the equation. To achieve the full 45-degree lean, Jackson would have had to have significant core strength as well as a strong Achilles tendon. An average person equipped with the shoe would be unable to do the move.

How does this apply to spinal biomechanics research? The authors point out that many dancers inspired by Jackson are continuing to push the limits of what's possible, leading to injury. In one 2010 paper, researchers surveyed 312 hip-hop dancers and found that 232 of them—almost 75 percent of the cohort—reported a total of 738 injuries over a six-month period. That prevalence could mean neurosurgeons are facing increasingly complex or unique spinal issues. The surgeons hope that awareness of potential risks could help mitigate problems down the road.

[h/t CNN]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios