CLOSE
Jonathan How, MIT
Jonathan How, MIT

New MIT Technology to Help Drones Dodge Obstacles May Make Deliveries Easier

Jonathan How, MIT
Jonathan How, MIT

New technology developed by MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) may help drones dodge collisions as they fly, making things like drone pizza delivery a whole lot more plausible on a large scale.

Whether you’re a human or a drone, moving through a city always involves a certain amount of uncertainty. Will that light turn green as you approach? Will a pedestrian bump into you? Will a pigeon fly in your face? Will there be a sudden road closure for a parade, or a newly installed crane at a construction site? And if there’s one thing that machines tend to be bad at, it’s dealing with uncertainty. For a fast-flying drone, navigating with a static map just won’t cut it in the real world.

So CSAIL researchers created NanoMap, a new system that can model uncertainty, taking into account that, as a drone flies, the conditions around it might change. The technology helps the drone plan for the fact that it probably doesn’t know precisely where it is in relation to everything else in the world. It spends less time calculating the perfect route around an obstacle, relying instead on a more general idea of where things are and how to avoid them, allowing it to process and avoid potential collisions more quickly.

It features depth sensors that constantly measure the distance between the drone and the objects around it, creating a kind of image for the machine of where it has been and where it is going. “It’s kind of like saving all of the images you’ve seen of the world as a big tape in your head,” MIT researcher Pete Florence explains in a press release. “For the drone to plan motions, it essentially goes back into time to think individually of all the different places that it was in.”

In testing, the NanoMap system allowed small drones to fly through forests and warehouses at 20 miles per hour while avoiding potential collisions with trees and other obstacles.

The project was funded in part by the Department of Defense’s DARPA, so it could be used as part of military missions, but it would also be helpful for any kind of drone-based delivery—whether it’s ferrying relief supplies to combat zones or your latest Amazon Prime package.

nextArticle.image_alt|e
WWF
arrow
Animals
Watch an Antarctic Minke Whale Feed in a First-of-Its-Kind Video
WWF
WWF

New research from the World Wildlife Fund is giving us a rare glimpse into the world of the mysterious minke whale. The WWF worked with Australian Antarctic researchers to tag minke whales with cameras for the first time, watching where and how the animals feed.

The camera attaches to the whale's body with suction cups. In the case of the video below, the camera accidentally slid down the side of the minke whale's body, providing an unexpected look at the way its throat moves as it feeds.

Minke whales are one of the smallest baleen whales, but they're still pretty substantial animals, growing 30 to 35 feet long and weighing up to 20,000 pounds. Unlike other baleen whales, though, they're small enough to maneuver in tight spaces like within sea ice, a helpful adaptation for living in Antarctic waters. They feed by lunging through the sea, gulping huge amounts of water along with krill and small fish, and then filtering the mix through their baleen.

The WWF video shows just how quickly the minke can process this treat-laden water. The whale could lunge, process, and lunge again every 10 seconds. "He was like a Pac-Man continuously feeding," Ari Friedlaender, the lead scientist on the project, described in a press statement.

The video research, conducted under the International Whaling Commission's Southern Ocean Research Partnership, is part of WWF's efforts to protect critical feeding areas for whales in the region.

If that's not enough whale for you, you can also watch the full 13-minute research video below:

nextArticle.image_alt|e
iStock
arrow
technology
AI Could Help Scientists Detect Earthquakes More Effectively
iStock
iStock

Thanks in part to the rise of hydraulic fracturing, or fracking, earthquakes are becoming more frequent in the U.S. Even though it doesn't fall on a fault line, Oklahoma, where gas and oil drilling activity doubled between 2010 and 2013, is now a major earthquake hot spot. As our landscape shifts (literally), our earthquake-detecting technology must evolve to keep up with it. Now, a team of researchers is changing the game with a new system that uses AI to identify seismic activity, Futurism reports.

The team, led by deep learning researcher Thibaut Perol, published the study detailing their new neural network in the journal Science Advances. Dubbed ConvNetQuake, it uses an algorithm to analyze the measurements of ground movements, a.k.a. seismograms, and determines which are small earthquakes and which are just noise. Seismic noise describes the vibrations that are almost constantly running through the ground, either due to wind, traffic, or other activity at surface level. It's sometimes hard to tell the difference between noise and legitimate quakes, which is why most detection methods focus on medium and large earthquakes instead of smaller ones.

But better understanding natural and manmade earthquakes means studying them at every level. With ConvNetQuake, that could soon become a reality. After testing the system in Oklahoma, the team reports it detected 17 times more earthquakes than what was recorded by the Oklahoma Geological Survey earthquake catalog.

That level of performance is more than just good news for seismologists studying quakes caused by humans. The technology could be built into current earthquake detection methods set up to alert the public to dangerous disasters. California alone is home to 400 seismic stations waiting for "The Big One." On a smaller scale, there's an app that uses a smartphone's accelerometers to detect tremors and alert the user directly. If earthquake detection methods could sense big earthquakes right as they were beginning using AI, that could afford people more potentially life-saving moments to prepare.

[h/t Futurism]

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios