These Fake Flowers Could Help Scientists Study At-Risk Bees

iStock
iStock

If you haven't heard, the world's bees are having a crisis. According to one recent study, bee populations in some areas have plummeted by 75 percent in a quarter of a century. Some countries have introduced legislation banning certain pesticides in response to the news, but solving the complicated problem will likely require much more research. In order to gather better data on bee behavior, one new media artist has developed a machine that can give scientists a bug's-eye view.

As Co.Design reports, Michael Candy's Synthetic Pollenizer is designed to blend into a bee's natural environment. Yellow circles bolted around the opening of the device imitate the petals on a flower. Tubes pump real nectar and pollen into the center of the fake flower, so when bees land on it to feed, they're collecting real reproductive materials they can spread to the next plant they visit.

Candy, who's based in Brisbane, Australia, originally conceived the apparatus as a way for scientists to track the pollinating behaviors of bees. The synthetic flower is outfitted with cameras and dyes, and with enough of them distributed in the wild, researchers could see which bees travel to certain places and how long they stay.

After his concept reached the final round of the Bio Art and Design awards in the Netherlands, Candy decided to create his own prototype with help from an urban beekeeper in Melbourne, Australia. The invention worked: Bees mistook it for real flora and carried pollen from it to their next destination. But to use it for tracking and studying bees on a larger scale, Candy would need to build a lot more of them. The pollinators would also need to be scattered throughout the bees' natural habitats, and since they would each come equipped with a camera, privacy (for nearby residents, not the bees) could become a concern.

Even if the concept never gets the funding it needs to expand, Candy says it could still be used in smaller applications. Fake flowers designed to look like real orchids, for example, could encourage the pollination of endangered orchid species. But for people studying dwindling bee populations, orchids are low on the list of concerns: 30 percent of all the world's crops are pollinated by bees [PDF].

[h/t Co.Design]

Female Lab Rats Are the Victims of Gender Bias, Too

Alexthq // Getty Images
Alexthq // Getty Images

Sexism in the workplace isn’t limited to humans. Because neuroscientists presumed that hormonal fluctuations in female lab rats would affect their test results, they have mainly stuck to studying male lab rats. But they may not be getting the whole story, reports Bethany Brookshire at Science News.

Female lab rats do indeed have hormonal surges that affect their behavior—but so do males. Previous research has shown that females consume more cocaine when in heat (in other words, with higher estrogen levels) than at other times. But males with low or high testosterone performed poorly on memory tests.

It’s not just the hormones and their effects that differ between the sexes—it’s also the timeframe for hormonal surges. Behavioral neuroendocrinologist Irving Zucker, who detailed these differences in a 2017 study [PDF] in Biology of Sex Differences, tells Science News that females’ hormones vary more over a few days, while males’ vary more over the course of a single day.

There are also differences between the sexes that have nothing to do with hormones at all. In a 2015 study in eLife, Rebecca Shansky, a neuroscientist at Northeastern University, showed female and male rats a tone or light followed by a (harmless) shock to the feet. While all of the rats first learned to freeze after the signal, fearing the shock, some of the females responded to subsequent signals by racing around the cage—for no obvious hormonal reason. Shansky concluded that female rats may learn to process fear differently than males, suggesting that equality of the sexes among lab rats (at least in terms of studying them) can lead to more insightful results.

Plus, if male and female rats behave differently in a given situation, it’s possible that male and female humans would, too. (Perhaps unsurprisingly, human females have also frequently been excluded from clinical trials, including several important long-running studies on aging and other issues.)

And if you’re starting to feel like rats deserve more credit than you’ve previously given them, check out these other impressive rat facts.

[h/t Science News]

12 Facts About Diabetes Mellitus

iStock/mthipsorn
iStock/mthipsorn

Thirty million Americans—about 9 percent of the country's population—are living with diabetes mellitus, or simply diabetes. This chronic condition is characterized by sustained high blood sugar levels. In many patients, symptoms can be managed with insulin injections and lifestyle changes, but in others, the complications can be deadly. Here's what you need to know about diabetes mellitus.

1. There are three types of diabetes.

In healthy people, the pancreas produces enough of the hormone insulin to metabolize sugars into glucose and move the glucose into cells, where it's used for energy.

But people with type 2 diabetes—the most common form of the disease, accounting for about 95 percent of cases—either can't produce enough insulin to transport the sugars, or their cells have become insulin-resistant. The result is a buildup of glucose in the blood (a.k.a. high blood sugar or hyperglycemia). Type 2 diabetes typically develops in adults.

Type 1 diabetes, also known as juvenile diabetes, makes up the remaining 5 percent of chronic cases and most often develops in children and young adults. With this condition, the initial problem isn’t blood sugar levels, but insulin production: The pancreas can’t make enough insulin to process even normal amounts of glucose. The sugar builds up as a result, leading to dangerous concentrations in the bloodstream.

The third form, gestational diabetes, only afflicts pregnant people who weren’t diabetic before their pregnancy. The mother's blood glucose levels usually spike around the 24th week of pregnancy, but with a healthy diet, exercise, and insulin shots in some cases, diabetes symptoms usually can be managed. Blood sugar levels tend to return to normal in patients following their pregnancies.

2. The mellitus in diabetes mellitus means "honey sweet."

Around 3000 years ago, ancient Egyptians described a condition with diabetes-like symptoms, though it wasn't called diabetes yet. It took a few hundred years before the Greek physician Araetus of Cappodocia came up with the name diabetes based on the Greek word for "passing through" (as in passing a lot of urine, a common diabetes symptom). English doctor Thomas Willis tacked on the word mellitus, meaning "honey sweet," in 1675, building on previous physicians' observations that diabetic patients had sweet urine. Finally, in 1776, another English physician named Matthew Dobson confirmed that both the blood and urine of diabetes patients were made sweeter by high levels of glucose in their blood.

3. The cause of one type of diabetes is well understood; the other, not so much.

A person’s lifestyle is a key predictor of developing type 2 diabetes. Factors like being overweight or obese, consuming a high-calorie diet, smoking, and seldom exercising contribute to the risk. Foods and drinks that are high in sugar—soda, candy, ice cream, dessert— may contribute to hyperglycemia, but any food that’s high in calories, even if it's not sweet, can raise blood sugar levels.

In contrast to these well-established factors, medical experts aren’t entirely sure what causes type 1 diabetes. We do know that type 1 is an autoimmune disease that develops when the body attacks and damages insulin-producing cells in the pancreas. Some scientists think that environmental factors, like viruses, may trigger this immune response.

4. Family history also plays a role in diabetes risk.

If a parent or sibling has type 2 diabetes, you are predisposed to developing pre-diabetes and type 2 diabetes. Lifestyle habits explain some of these incidences, since family members may share similar diets and exercise habits. Genetics also play a role, but just because one close relative has diabetes does not mean you're destined to. Research conducted on identical twins, which share identical genes, showed that the pairs have discordant risk. Among twins in which one has type 1 diabetes, the other has only a 50 percent chance of developing it; for type 2, the risk for the second twin is 75 percent at most.

5. Racial minorities are at a higher risk for developing diabetes.

Many racial minority groups in the U.S. have a higher chance of developing type 2 diabetes. Black Americans, Latino Americans, Native Americans, Pacific Islanders, and some groups of Asian Americans are more likely to have pre-diabetes and type 2 diabetes than white Americans. This can be partly explained by the fact that some of these groups also have higher rates of obesity, which is one of the primary risk factors of type 2 diabetes. Socioeconomics may also play a role: One study shows that people with diabetes living in poverty are less likely to visit diabetes clinics and receive proper testing than their middle-income counterparts. According to another study, diabetic people without health insurance have higher blood sugar, blood pressure, and cholesterol rates than insured diabetics. Genetics, on the other hand, don’t appear to contribute to these trends.

6. Diabetes is one of the world's deadliest diseases.

With proper management, people with diabetes can live long, comfortable lives. But if the disease isn’t treated, it can have dire consequences. Diabetics make up the majority of people who develop chronic kidney disease, have adult-onset blindness, and need lower-limb amputations. In the most serious cases, diabetes leads to death. The condition is one of the deadliest diseases in the world, killing more people than breast cancer and AIDS combined.

7. Millions of Americans are pre-diabetic.

According to the CDC, 84 million adults living in the U.S. are pre-diabetic: Their blood sugar is higher than what’s considered safe, but hasn't yet reached diabetic level. In pre-diabetic patients, blood glucose levels after eight hours of fasting fall between 100 and 125 milligrams per deciliter, and diabetic levels are anything above that. People with pre-diabetes are not just at a greater risk for type 2 diabetes, but also for heart disease and stroke. Fortunately, people who are diagnosed with pre-diabetes can take steps to eat a healthier diet, increase physical activity, and test their blood glucose level several times a day to control the condition. In some cases, doctors will prescribe drugs like metformin that make the body more receptive to the insulin it produces.

8. After climbing for decades, rates of diabetes incidence are declining.

In the U.S., the rate of new diagnoses skyrocketed 382 percent between 1988 and 2014. Globally, 108 million people had diabetes in 1980, but by 2014 that number was 422 million.

But thanks to nationwide education and prevention efforts, the trend has reversed in the U.S., according to the CDC. Since peaking in 2009, the number of new diabetes cases in America has dropped by 35 percent. In that same timeframe, the number of people living with diagnosed diabetes in the U.S. has plateaued, suggesting people with the condition are living longer.

9. The first successful treatment for type 1 diabetes occurred in 1922.

Prior to the 20th century, type 1 diabetes was usually fatal. Diabetic ketoacidosis—a toxic buildup of chemicals called ketones, which arise when the body can no longer use glucose and instead breaks down other tissues for energy—killed most patients within a year or two of diagnosis. In searching for way to save children with juvenile (type 1) diabetes, Canadian physician Frederick Banting and medical student Charles Best built on the work of earlier researchers, who had demonstrated that removing the pancreas from a dog immediately caused diabetes symptoms in the animal. Banting and Best extracted insulin from dog pancreases in University of Toronto professor J.J.R. Macleod's lab. After injecting the insulin back into dogs whose pancreases had been removed, they realized the hormone regulated blood sugar levels. On January 11, 1922, they administered insulin to a human patient, and further refined the extract to reduce side effects. In 1923, Banting and Macleod received the Nobel Prize in Medicine for their work.

10. A pioneering physicist discovered the difference between type and and type 1 diabetes.

In the 1950s, physicist Rosalyn Yalow and her research partner Solomon Berson developed a method for measuring minute amounts of substances in blood. Inspired by Yalow's husband's struggle with diabetes, Yalow focused her research on insulin. Their "radioimmunoassay" technology revealed that some diabetes patients were still able to produce their own insulin, leading them to create two separate categories for the disease: “insulin-dependent” (type 1) and “non-insulin-dependent” (type 2). Prior to that discovery in 1959, there was no distinction between the two types. In 1977, Yalow won the 1977 Nobel Prize in Medicine for the radioimmunoassay, one of only 12 female Nobel laureates in medicine.

11. Making one insulin dose once required tons of pig parts.

Insulin is relatively easy to make today. Most of what's used in injections comes from a special non-disease-producing laboratory strain of E. coli bacteria that's been genetically modified to produce insulin, but that wasn't always the case. Until about 40 years ago, 2 tons of pig pancreases were required to produce just 8 ounces of pure insulin. The pig parts were typically recycled from pork farms.

12. A quarter of diabetes patients don’t know they have it.

The symptoms of type 2 diabetes can develop for years before patients think to ask their doctor about them. These include frequent urination, unexplained thirst, numbness in the extremities, dry skin, blurry vision, fatigue, and sores that are slow to heal—signs that may not be a cause for concern on their own, but together can indicate a more serious problem. Patients with type 1 diabetes may also experience nausea, vomiting, and stomach pain.

While serious, the symptoms of diabetes are sometimes easy to overlook. That’s why 25 percent of people with the illness, 7.2 million in the U.S., are undiagnosed. And that number doesn’t even cover the majority of people with pre-diabetes who aren’t aware they’re on their way to becoming diabetic.

SECTIONS

arrow
LIVE SMARTER