CLOSE
iStock
iStock

What Is Foreign Accent Syndrome?

iStock
iStock

One night in 2016, Michelle Myers—an Arizona mom with a history of migraines—went to sleep with a splitting headache. When she awoke, her speech was marked with what sounded like an British accent, despite having never left the U.S. Myers is one of about 100 people worldwide who have been diagnosed with Foreign Accent Syndrome (FAS), a condition in which people spontaneously speak with a non-native accent.

In most cases, FAS occurs following a head injury or stroke that damages parts of the brain associated with speech. A number of recent incidences of FAS have been well documented: A Tasmanian woman named Leanne Rowe began speaking with a French-sounding accent after recovering from a serious car accident, while Kath Lockett, a British woman, underwent treatment for a brain tumor and ended up speaking with an accent that sounds somewhere between French and Italian.

The first case of the then-unnamed syndrome was reported in 1907 when a Paris-born-and-raised man who suffered a brain hemorrhage woke up speaking with an Alsatian accent. During World War II, neurologist Georg Herman Monrad-Krohn compiled the first comprehensive case study of the syndrome in a Norwegian woman named Astrid L., who had been hit on the head with shrapnel and subsequently spoke with a pronounced German-sounding accent. Monrad-Krohn called her speech disorder dysprosody: her choice of words and sentence construction, and even her singing ability, were all normal, but her intonation, pronunciation, and stress on syllables (known as prosody) had changed.

In a 1982 paper, neurolinguist Harry Whitaker coined the term "foreign accent syndrome" for acquired accent deviation after a brain injury. Based on Monrad-Kohn's and other case studies, Whitaker suggested four criteria for diagnosing FAS [PDF]:

"The accent is considered by the patient, by acquaintances, and by the investigator to sound foreign.
It is unlike the patient’s native dialect before the cerebral insult.
It is clearly related to central nervous system damage (as opposed to a hysteric reaction, if such exist).
There is no evidence in the patient’s background of being a speaker of a foreign language (i.e., this is not like cases of polyglot aphasia)."

Not every person with FAS meets all four criteria. In the last decade, researchers have also found patients with psychogenic FAS, which likely stems from psychological conditions such as schizophrenia rather than a physical brain injury. This form comprises fewer than 10 percent of known FAS cases and is usually temporary, whereas neurogenic FAS is typically permanent.

WHAT’S REALLY HAPPENING?

While scientists are not sure why certain brain injuries or psychiatric problems give rise to FAS, they believe that people with FAS are not actually speaking in a foreign accent. Instead, their neurological damage impairs their ability to make subtle muscle movements in the jaw, tongue, lips, and larynx, which results in pronunciation that mimics the sound of a recognizable accent.

"Vowels are particularly susceptible: Which vowel you say depends on where your tongue is in your mouth," Lyndsey Nickels, a professor of cognitive science at Australia's Macquarie University, wrote in The Conversation. "There may be too much or too little muscle tension and therefore they may 'undershoot' or 'overshoot' their target. This leads to the vowels sounding different, and sometimes they may sound like a different accent."

In Foreign Accent Syndromes: The Stories People Have to Tell, authors Nick Miller and Jack Ryalls suggest that FAS could be one stage in a multi-phase recovery from a more severe speech disorder, such as aphasia—an inability to speak or understand speech that results from brain damage.

People with FAS also show wide variability in their ability to pronounce sounds, choose words, or stress the right syllables. The accent can be strong or mild. Different listeners may hear different accents from the speaker with FAS (Lockett has said people have asked her if she's Polish, Russian, or French).

According to Miller and Ryalls, few studies have been published about speech therapy for treating FAS, and there's no real evidence that speech therapy makes a difference for people with the syndrome. More research is needed to determine if advanced techniques like electromagnetic articulography—visual feedback showing tiny movements of the tongue—could help those with FAS regain their original speaking manner.

Today, one of the pressing questions for neurologists is understanding how the brain recovers after injury. For that purpose, Miller and Ryalls write that "FAS offers a fascinating and potentially fruitful forum for gaining greater insights into understanding the human brain and the speech processes that define our species."

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

nextArticle.image_alt|e
Mark Ralston/AFP/Getty Images
arrow
Big Questions
What Causes Sinkholes?
Mark Ralston/AFP/Getty Images
Mark Ralston/AFP/Getty Images

This week, a sinkhole opened up on the White House lawn—likely the result of excess rainfall on the "legitimate swamp" surrounding the storied building, a geologist told The New York Times. While the event had some suggesting we call for Buffy's help, sinkholes are pretty common. In the past few days alone, cavernous maws in the earth have appeared in Maryland, North Carolina, Tennessee, and of course Florida, home to more sinkholes than any other state.

Sinkholes have gulped down suburban homes, cars, and entire fields in the past. How does the ground just open up like that?

Sinkholes are a simple matter of cause and effect. Urban sinkholes may be directly traced to underground water main breaks or collapsed sewer pipelines, into which city sidewalks crumple in the absence of any structural support. In more rural areas, such catastrophes might be attributed to abandoned mine shafts or salt caverns that can't take the weight anymore. These types of sinkholes are heavily influenced by human action, but most sinkholes are unpredictable, inevitable natural occurrences.

Florida is so prone to sinkholes because it has the misfortune of being built upon a foundation of limestone—solid rock, but the kind that is easily dissolved by acidic rain or groundwater. The karst process, in which the mildly acidic water wears away at fractures in the limestone, leaves empty space where there used to be stone, and even the residue is washed away. Any loose soil, grass, or—for example—luxury condominiums perched atop the hole in the ground aren't left with much support. Just as a house built on a weak foundation is more likely to collapse, the same is true of the ground itself. Gravity eventually takes its toll, aided by natural erosion, and so the hole begins to sink.

About 10 percent of the world's landscape is composed of karst regions. Despite being common, sinkholes' unforeseeable nature serves as proof that the ground beneath our feet may not be as solid as we think.

A version of this story originally ran in 2014.

nextArticle.image_alt|e
iStock
arrow
Big Questions
How Are Speed Limits Set?
iStock
iStock

When driving down a road where speed limits are oppressively low, or high enough to let drivers get away with reckless behavior, it's easy to blame the government for getting it wrong. But you and your fellow drivers play a bigger a role in determining speed limits than you might think.

Before cities can come up with speed limit figures, they first need to look at how fast motorists drive down certain roads when there are no limitations. According to The Sacramento Bee, officials conduct speed surveys on two types of roads: arterial roads (typically four-lane highways) and collector streets (two-lane roads connecting residential areas to arterials). Once the data has been collected, they toss out the fastest 15 percent of drivers. The thinking is that this group is probably going faster than what's safe and isn't representative of the average driver. The sweet spot, according to the state, is the 85th percentile: Drivers in this group are thought to occupy the Goldilocks zone of safety and efficiency.

Officials use whatever speed falls in the 85th percentile to set limits for that street, but they do have some wiggle room. If the average speed is 33 mph, for example, they’d normally round up to 35 or down to 30 to reach the nearest 5-mph increment. Whether they decide to make the number higher or lower depends on other information they know about that area. If there’s a risky turn, they might decide to round down and keep drivers on the slow side.

A road’s crash rate also comes into play: If the number of collisions per million miles traveled for that stretch of road is higher than average, officials might lower the speed limit regardless of the 85th percentile rule. Roads that have a history of accidents might also warrant a special signal or sign to reinforce the new speed limit.

For other types of roads, setting speed limits is more of a cut-and-dry process. Streets that run through school zones, business districts, and residential areas are all assigned standard speed limits that are much lower than what drivers might hit if given free rein.

Have you got a Big Question you'd like us to answer? If so, let us know by emailing us at bigquestions@mentalfloss.com.

SECTIONS

arrow
LIVE SMARTER
More from mental floss studios