9 Facts About Human Decomposition

iStock
iStock

From rotting corpses crawling with maggots to oozing bodies emitting stomach-churning stenches, the decaying human body is the stuff of nightmares, horror movies, and crime dramas. We're both fascinated and repelled by decomposition, which has given rise to many myths and urban legends. (No, hair and nails don't grow after death, and corpses never sit up on mortuary tables.) Here are nine fascinating facts that demystify how we transition from flesh to bone to dust.

1. DECOMPOSITION STARTS ALMOST IMMEDIATELY AFTER DEATH.

It takes approximately four minutes from the moment a person has breathed their last for the shortage of oxygen in their body to kick off a series of events happening at the microscopic level: The levels of carbon dioxide and acidity rise in the bloodstream, and toxic wastes build up, poisoning the cells. Then, enzymes within cells begin to eat away at them. Organs with high concentrations of enzymes and water, such as the liver and the brain, are ground zero for this process.

One of the first visible signs of death is when the eyes cloud over, a result of fluids and oxygen no longer flowing to the corneas. That can begin within 10 minutes [PDF] of death.

2. THERE ARE FIVE PHASES OF DECOMPOSITION.

The first phase is called fresh. It's characterized by cell autolysis, "or self-digestion": The cells burst open due to the work of enzymes, and fluids leak out. Fluid-filled blisters emerge on the skin, which slips easily off the body in large sheets.

Meanwhile, resident anaerobic bacteria in the gut begin to break down cells, beginning the second phase of decomposition: bloat. As these microbes work away, gases begin to accumulate in the intestines, and the surrounding tissues expand. The gases react with hemoglobin, a protein found in red blood cells, producing a green pigment in the veins ("marbling"), and the skin turns green, then black.

During active decomposition, the third phase, tissues begin to liquefy and decomposition fluids seep out through orifices. According to Dawnie Wolfe Steadman, director of the Forensic Anthropology Center at the University of Tennessee, Knoxville, the loss of tissue mass is the chiefly the work of fly maggots—which feast on tissues—and bacteria.

Advanced decomposition is when most soft tissues are gone, whatever skin is left has turned dry and leathery, and the skeleton is visible, thanks to the handiwork of yet more bugs. "While the fly maggots no longer have much to feed on, other insects such as beetles come," Steadman says. "They are capable of breaking down the tougher soft tissues, like tendons, ligaments, and even cartilage."

Skeletal decay is the end of the decomposition process. A variety of factors result in the breakdown or fragmentation of bones. Acidic soil, for example, dissolves an inorganic mineral compound called hydroxylapatite—a mix of calcium and phosphate—that accounts for 70 percent of our bone material [PDF]. Bones can also disintegrate when they are subjected to a variety of physical forces, including being gnawed on by scavengers or being slowly eroded by the flow of water.

How long each of the above stages lasts depends on factors such as temperature, burial conditions, and the presence of microbes, insects, and scavengers. Active decomposition in particular is greatly influenced by the temperature; flies lay their eggs in warmer months, so decomposition tends to be slower in colder temperatures. Bones generally begin to bleach within the first year, and algae and moss may grow on their surface. Large cracks tend to form after about a decade.

3. RIGOR MORTIS IS ONLY TEMPORARY.

Fans of shows like Law & Order: SVU are likely to be familiar with rigor mortis, or the stiffening of the body’s muscles following death. It begins within two to six hours, originating in the face and neck and spreading outwards toward the limbs. Rigor mortis is the result of the two types of fibers in our muscle cells—actin and myosin—becoming tightly linked by chemical bonds that develop in response to lower pH levels in the cells, creating inflexibility [PDF]. But this rigidity goes away within 1 to 3.5 days, as the bonds between the muscle fibers break and the muscles relax, once again starting with the face. As this happens, the body can release feces and urine.

Rigor mortis occurs more quickly and persists longer in cooler temperatures than in warmer ones; according to one study, rigor lasted for 10 days in corpses refrigerated at 39°F in a mortuary. What happens right before death can influence rigor mortis too: A high fever will shorten how long it lasts, while vigorous physical activity will cause it to set in sooner. These effects are likely caused by a drop in the levels of the chemical ATP (adenosine triphosphate), an energy driver in cells, and increased amounts of lactic acid, which lower the pH in muscle cells.

4. DECOMPOSITION DOESN'T SMELL AS BAD AS YOU'D EXPECT.

“People think bodies always smell awful,” says Melissa Connor, director of the Forensic Investigation Research Station at Colorado Mesa University. “But while there are a few times and phases [where the] remains are odiferous, for the most part, the smell is not overpowering.”

Malodorous gases build through the bloat phase, but the smells lessen as decomposition progresses. According to Connor, in the summer, a corpse can pass through the odiferous stages in 10 days or less.

A mix of gases is responsible for the “sickly sweet” stench of death. Of these, putrescine and cadaverine—produced when bacteria break down the amino acids ornithine and lysine, respectively—emit distinctive noxious odors. These gases can be absorbed through the skin and compete with or displace oxygen—a potential health risk for people working with decomposing bodies in closed environments, such as underneath a house or in a well shaft. A recent study suggests that putrescine may act as a warning signal that death is near, triggering a “flight-or-fight” response.

5. DECOMPOSITION CAN SOMETIMES CREATE "SOAPY" CORPSES.

Another stinky by-product of decomposition is a waxy substance called adipocere. It's formed from fat under wet conditions through a process called saponification (the same basic chemical reaction by which soaps are made from fats). Fresh adipocere smells like ammonia, but over time, adipocere dries out and the odor disappears. Philadelphia’s Mütter Museum has a specimen of a corpse encased in adipocere known as the Soap Lady, who was exhumed in 1875 from a city cemetery. The Smithsonian has a male counterpart: Soapman, who was also found in Philadelphia in 1875 during the construction of a train depot. He died around 1800.

6. THE 'NECROBIOME' COULD HELP US DETERMINE TIME OF DEATH MORE ACCURATELY.

Forensic entomologists use insects to infer time of death, but there are other potential biological clues. According to Steadman, forensic scientists are researching how different species of bacteria can influence decomposition, and if bacteria can help identify individuals.

"Some researchers are looking at the necrobiome—or all the little bacteria and fungi that inhabit a corpse—and seeing if changes in the necrobiome can inform time of death," Connor says. By knowing which strains of bacteria and other microbes are present at each phase of decomposition, scientists can put together a microbial clock to help estimate the time since death. Some of these microbes come from our own microbiome; others come from the surrounding soil, or are carried to the body by flies, other insects, and scavengers.

7. WITHOUT BUGS OR BACTERIA, DECOMPOSITION CAN SLOW WAY, WAY DOWN …

In December 1977, in Franklin, Tennessee, the Williamson County Sheriff was called to an antebellum estate called Two Rivers. The owners had reported a disturbance in the small graveyard attached to the estate. There, the sheriff’s department found a headless male corpse dressed in formal wear atop the broken coffin of a Confederate lieutenant colonel named William Shy, who had died in 1864. Forensic anthropologist William Bass was asked to examine the body.

In his book Death’s Acre, Bass writes that the corpse had been preserved in the early stages of decomposition; the "flesh was still pink," he notes. He estimated the man had been dead a year at most. But some things didn't add up, which puzzled Bass. The style of clothing was dated and the shoes were made of old materials. The corpse’s head was later found in the coffin, and the teeth had not seen modern dentistry. All of this led Bass to suspect that the body was in fact Shy’s.

Turns out he was right the second time around. Shy's corpse had been unceremoniously yanked out of his resting place by grave robbers. The 113-year-old body was so well-preserved because it was embalmed—which slows decomposition (by how much depends on the embalming process)—and because the cast-iron coffin was hermetically sealed, keeping out any insects and microbes that would have pushed decomposition beyond the early stages.

More recently, in May 2016, an airtight metal casket was unearthed in a backyard in San Francisco. The home had been built on the site of a cemetery. Inside the casket was the well-preserved body of a toddler, Edith Cook, who had died in 1876. News reports don’t explicitly state whether Edith was embalmed, but old ads from the casket’s manufacturers boast that it offered “perfect protection from water and vermin.”

Still, cast-iron coffins aren't decomposition-proof: In other cases, they've exploded due to bloat-stage gases. This gas buildup has been a problem for some modern "protective" or "sealer" caskets too.

8. … AND ENVIRONMENTAL CONDITIONS CAN ALTER DECOMPOSITION.

Certain environmental conditions are ideal for preserving bodies and creating natural mummies—which are unique because the skin survives active decomposition.

A combination of low oxygen, highly acidic water, and cool temperatures in European peat bogs turns corpses into bog bodies. While the acidic water breaks down bones, tannins in the peat and the lack of oxygen preserve skin—every expression, wrinkle, and fingerprint—with astonishing detail. Famous examples include the Tollund Man and Lindow Man.

La Doncella, or “The Maiden,” is an ancient Inca teenager who was left to die in the Andes Mountains in Argentina as a part of a ritual sacrifice. She was found in 1999, head down, appearing to be asleep. Though she died more than 500 years ago, her hair, skin, and clothing are all almost perfectly preserved. The high altitude, low temperatures, and low oxygen level account for La Doncella’s condition.

Another example of the preservative powers of the mountains is Ötzi, a natural mummy of a man who died about 5300 years ago. He was discovered in 1991 in Ötztal Valley Alps and has been preserved almost in his entirety. Though the glacier ice dehydrated his body, his skin, other tissues, organs and bones remain in great shape.

9. DISEASES THAT KILL THEIR HUMAN HOSTS CAN SURVIVE DECOMPOSITION.

A number of disease-causing viruses can hang around even after death. The Ebola virus is particularly contagious even after a person has died: It remains in their blood and other bodily fluids. Any contact with broken skin or the mucous membrane (which lines the nose, mouth, and other body cavities) of a healthy person is enough to pass on the infection. For this reason, the World Health Organization recommends that infected bodies be buried quickly and safely, with everyone handling the body wearing protective gear and the body buried in a coffin in the ground. The virus has been shown to persist in dead primates for up to a week.

Norovirus (the stomach flu) can also spread in a manner similar to Ebola, and it is possible to catch influenza from the infected mucus of a dead person. The smallpox virus remains in the scabs of a dead person for as long as a century—but at least it's not contagious from the dead to living.

Tonight, the Lyrid Meteor Shower Peaks on Earth Day

iStock/dmoralesf
iStock/dmoralesf

Tonight, look up and you might see shooting stars streaking across the sky. On the night of Monday, April 22—Earth Day—and the morning of Tuesday, April 23, the Lyrid meteor shower will peak over the Northern Hemisphere. Make some time for the celestial show and you'll probably see meteors zooming across the heavens every few minutes. Here is everything you need to know about this meteor shower.

What is the Lyrid meteor shower?

Every 415.5 years, the comet Thatcher circles the Sun in a highly eccentric orbit shaped almost like a cat's eye. At its farthest from the Sun, it's billions of miles from Pluto; at its nearest, it swings between the Earth and Mars. (The last time it was near the Earth was in 1861, and it won't be that close again until 2280.) That's quite a journey, and more pressingly, quite a variation in temperature. The closer it gets to the Sun, the more debris it sheds. That debris is what you're seeing when you see a meteor shower: dust-sized particles slamming into the Earth's atmosphere at tens of thousands of miles per hour. In a competition between the two, the Earth is going to win, and "shooting stars" are the result of energy released as the particles are vaporized.

The comet was spotted on April 4, 1861 by A.E. Thatcher, an amateur skywatcher in New York City, earning him kudos from the noted astronomer Sir John Herschel. Clues to the comet's discovery are in its astronomical designation, C/1861 G1. The "C" means it's a long-period comet with an orbit of more than 200 years; "G" stands for the first half of April, and the "1" indicates it was the first comet discovered in that timeframe.

Sightings of the Lyrid meteor shower—named after Lyra, the constellation it appears to originate from—are much older; the first record dates to 7th-century BCE China.

How to See the Lyrid Meteor Shower

Monday night marks a waning gibbous Moon (just after the full Moon), which will reflect a significant amount of light. You're going to need to get away from local light pollution and find truly dark skies, and to completely avoid smartphones, flashlights, car headlights, or dome lights. The goal is to let your eyes adjust totally to the darkness: Find your viewing area, lay out your blanket, lay down, look up, and wait. In an hour, you'll be able to see the night sky with great—and if you've never done this before, surprising—clarity. Don't touch the smartphone or you'll undo all your hard ocular work.

Where is the nearest dark sky to where you live? You can find out on the Dark Site Finder map. And because the shower peaks on a Monday night—when you can expect to see 20 meteors per hour—your local astronomy club is very likely going to have an event to celebrate the Lyrid meteor shower. Looking for a local club? Sky & Telescope has you covered.

Other Visible Bodies During the Lyrid meteor shower

You don't need a telescope to see a meteor shower, but if you bring one, aim it south to find Jupiter. It's the bright, unblinking spot in the sky. With a telescope, you should be able to make out its stripes. Those five stars surrounding it are the constellation Libra. You'll notice also four tiny points of light nearby. Those are the Galilean moons: Io, Europa, Ganymede, and Callisto. When Galileo discovered those moons in 1610, he was able to prove the Copernican model of heliocentricity: that the Earth goes around the Sun.

What to Do if There's Bad Weather During the Lyrid Meteor Shower

First: Don't panic. The shower peaks on the early morning of April 23. But it doesn't end that day. You can try again on April 24 and 25, though the numbers of meteors will likely diminish. The Lyrid meteor shower will be back next year, and the year after, and so on. But if you are eager for another show, on May 5, the Eta Aquarids will be at their strongest. The night sky always delivers.

Does the Full Moon Really Make People Act Crazy?

iStock.com/voraorn
iStock.com/voraorn

Along with Mercury in retrograde, the full moon is a pretty popular scapegoat for bad luck and bizarre behavior. Encounter someone acting strangely? Blame it on the lunar phases! It's said that crime rates increase and emergency rooms are much busier during the full moon (though a 2004 study debunked this claim). Plus, there's that whole werewolf thing. Why would this be? The reasoning is that the Moon, which affects the ocean's tides, probably exerts a similar effect on us, because the human body is made mostly of water.

This belief that the Moon influences behavior is so widely held—reportedly, even 80 percent of nurses and 64 percent of doctors think it's true, according to a 1987 paper published in the Journal of Emergency Medicine [PDF]—that in 2012 a team of researchers at Université Laval's School of Psychology in Canada decided to find out if mental illness and the phases of the Moon are linked [PDF].

To test the theory, the researchers evaluated 771 patients who visited emergency rooms at two hospitals in Montreal between March 2005 and April 2008. The patients chosen complained of chest pains, which doctors could not determine a medical cause for the pains. Many of the patients suffered from panic attacks, anxiety and mood disorders, or suicidal thoughts.

When the researchers compared the time of the visits to the phases of the Moon, they found that there was no link between the incidence of psychological problems and the four lunar phases, with one exception—in the last lunar quarter, anxiety disorders were 32 percent less frequent. "This may be coincidental or due to factors we did not take into account," Dr. Geneviève Belleville, who directed the team of researchers, said. "But one thing is certain: we observed no full-moon or new-moon effect on psychological problems."

So rest easy (or maybe not): If people seem to act crazy during the full Moon, their behavior is likely pretty similar during the rest of the lunar cycle as well.

This story was updated in 2019.

SECTIONS

arrow
LIVE SMARTER