11 Insightful Facts About Eyes

iStock.com/Paffy69
iStock.com/Paffy69

There are a lot of myths and misconceptions about the eyes. No, sitting too close to the TV won't damage your vision, and reading in dim light won’t hurt either. It’s understandable that various parts of the eye are so little understood, though. Each eye has more than a million optic nerve cells and over 106 million photoreceptor cells, making it one of the most complex organs we have. Here are a few more things you should know about your “windows to the soul.”

1. Newborn babies see the world in black and white—and red.

“It is a myth that babies see in black and white,” Anna Franklin, leader of the University of Sussex's Baby Lab, told The Guardian. While newborns do see black, white, and shades of gray, they can also detect red objects against a gray backdrop, Franklin says. The reason why they can’t see more colors is because the cones in their eyes—the photoreceptor cells responsible for picking up colors—are too weak to detect them. Those cells quickly get stronger, though. After about two months, babies can distinguish between red and green, and a few weeks later they can tell the difference between blue and yellow.

2. Your eyeballs grow as you age.

Another common misconception is that your eyes remain the same size from birth to adulthood. As a newborn, your eyes measure about three-fifths of an inch from front to back, compared to a little under an inch in adults. Your eyes actually grow a great deal in the first two years of life, and another growth spurt occurs when you go through puberty. The confusion likely stems from the fact that your eyes as a 6-month-old infant are two-thirds the size they will be when you’re an adult.

3. The length of your eye partly determines how well you'll be able to see.

If your eyeball is too long or too short, you might end up having problems with your vision. Nearsighted people have eyes that are longer than average, while farsighted people have eyes that come up a little short. If you were to magically add or remove a millimeter of length from your eye, it would completely change your prescription. Aside from eye length, the shape of your cornea (the outer part of the eye where contact lenses are placed) and lens (the part of the eye located behind the iris and pupil) are other key factors that determine the quality of your vision. That's because both of these parts work together to refract light.

4. Contact lenses can't really get lost behind your eye.

Although it may feel like a dislodged contact lens is stuck behind your eye, that isn’t exactly what’s happening. The thin membrane covering the white part of your eye and the underside of your eyelid—called the conjunctiva—forms a pouch and prevents objects from getting behind your eyeball. If a contact lens gets shifted out of place to the point where you can no longer see it, it’s just stuck underneath your upper eyelid, which isn’t nearly as scary.

5. Blue-eyed people share a common ancestor.

Originally, everyone in the world had brown eyes. It wasn’t until around 6000 to 10,000 years ago that the first blue-eyed person was born as a result of a genetic mutation, according to a 2008 study. That mutation of the OCA2 gene essentially “turned off the ability to produce brown eyes” and diluted the color to blue, Professor Hans Eiberg of the University of Copenhagen said in a statement.

6. Parts of the eye can get sunburned.

There’s a good reason you should wear sunglasses when it’s bright outside. Too much exposure to UV rays can damage the surface of the cornea and conjunctiva, causing a condition akin to sunburn called photokeratitis. Symptoms include pain, red or swollen eyes, the sensation of a foreign body in the eyes, blurred vision, headaches, and seeing halos around lights. While the discomfort is temporary and tends to go away within 48 hours, longer exposure to UV rays can have a long-term effect on your vision and lead to macular degeneration (deterioration of the retina, which is often age-related) and cataracts (clouding of the eye's lens, which reduces the amount of light coming in).

7. Your eye muscles are the fastest muscle in your body.

Extraocular muscles are what let you look around in all directions. You have six of these muscles in each eye, and many of the motions they make are involuntary. This lets you flick your eyes to one side and notice something in your peripheral vision without consciously looking in that direction. When both of your eyes move in the same direction, the movement is called a saccade, which comes from the French word for “jerk” (the verb, not the person). These jerky movements are extremely rapid, lasting about 50 to 60 milliseconds per saccade, according to Dr. Reza Shadmehr, professor of biomedical engineering and neuroscience at Johns Hopkins University. “Saccadic eye movements are the fastest voluntary movements that we can make. The eyes move at around 500 degrees per second or more,” Shadmehr tells Mental Floss.

8. Your eye movements might give away your next move.

Shadmehr and other researchers conducted an experiment in 2015 to test the relationship between saccades and decision-making. Participants were placed in front of a computer and asked to choose between two options that appeared on the screen: an immediate reward and a delayed reward. For instance, one option might be “get $10 today,” while the other might be “wait 30 days and get $30.” Their eye movements were tracked the entire time, and researchers discovered that these movements gave away the choice they were about to make before they made it. At the last minute, their eyes would move at a faster velocity towards the option that they preferred.

“What’s interesting is that as the saccades are being made, the velocity of the eyes starts out being equal between these two stimuli, but then right before you decide ‘I like A better than B,' the saccade that you make toward A has a higher velocity than the one you make toward B,” Shadmehr explains. “The idea is that the way you’re evaluating things is reflected in the way you move toward them.”

In another experiment, Shadmehr found a correlation between faster eye movements and impatient and impulsive behaviors. Similarly, other studies have shown that our eye movements are linked to moral decisions and even our political temperament.

9. You can tell some animals' place in the food chain by looking at a part of their eye.

In 2015, vision scientist Martin Banks and his colleagues looked at the eyes of 214 species in an attempt to answer the question, “Why do animal eyes have pupils of different shapes?” By the end of their study, they noticed a few patterns. Predatory animals like big cats and snakes tend to have pupils in the shape of vertical slits. This particular shape gives them the advantage of being able to accurately judge the distance separating them and their prey, so they'll know exactly how far they have to pounce. On the other hand, horizontal pupils are more common in goats, deer, cattle, and other herbivores. This shape improves an animal’s panoramic vision, which helps them look out for predators.

10. An eye condition may have been partly responsible for Leonardo da Vinci's artistic genius.

Visual neuroscientist Christopher Tyler argued in a recent paper that the master artist behind Mona Lisa had strabismus, a disorder where the eyes are misaligned. Essentially, one of his eyes turned outwards, and he was able to use both of his eyes separately (monocular as opposed to binocular vision). Tyler believes this actually aided his art by improving his ability to render three-dimensional images on a flat canvas. “The condition is rather convenient for a painter, since viewing the world with one eye allows direct comparison with the flat image being drawn or painted,” Tyler said. We’ll never know for sure whether or not this was true for Leonardo, but it’s an intriguing theory.

11. SURGEONS HOPE TO BE PERFORMING WHOLE EYE TRANSPLANTS BY 2026. 

Currently, only cornea transplants to improve vision are possible, but a team of Pittsburgh-based transplant surgeons said in 2016 that they hoped to be performing whole eye transplants in humans within the next decade. Transferring an eye from a deceased donor to a recipient certainly won’t be easy, though. A complicated network of muscles, blood vessels, and nerves connects the eyes to the brain via the optic nerve. However, further studies into the optic nerve and recent advances in immunosuppressive drugs and surgical techniques have brought them several steps closer to achieving this goal. If successful, the surgery could restore vision to people who have suffered severe eye injuries. Their research is backed by the Department of Defense, which is concerned about the number of soldiers who sustain eye injuries in combat.

12 Facts About the Pancreas

iStock.com/ericsphotography
iStock.com/ericsphotography

You could live without your pancreas, but it wouldn’t be easy. For one, you would need to give yourself insulin shots on a daily basis because you would develop diabetes. A helping of enzyme pills would also be needed to help you digest food. It's clear that the 6-inch-long pancreas, located behind your stomach, has crucial functions—and that's why diseases like pancreatic cancer and pancreatitis are often so devastating. Here are a few other important facts to know about the pancreas.

1. Pancreas means “all flesh” in Greek.

Around 300 BCE, a surgeon in ancient Greece named Herophilus became the first person to formally describe the pancreas as a gland. However, the organ didn’t get its name until about 400 years later, when another Greek surgeon and anatomist named Ruphos dubbed it the pankreas, meaning “all flesh”—possibly because of its lack of bone or cartilage. (The plural of pancreas, by the way, is pancreata or pancreases.) Later, in the 16th century, people started referring to a dish of cooked calf or lamb pancreas as “sweetbreads.” That name possibly stems from bræd, the Old English word for “flesh.”

2. The pancreas has a head and a tail.

The pancreas has four main parts: the head, neck, body, and tail. The widest part is the head, which is attached to the first part of the small intestine, known as the duodenum. In cases where a pancreatic tumor is present, the head is usually the part that’s affected. However, according to one study from 2008, people with tumors in the body or tail of the pancreas had lower survival rates than those with cancer in the head of the pancreas.

3. The man who discovered the pancreatic duct may have been murdered for his work.

The pancreatic duct is a tiny tube that runs the length of the pancreas and carries digestive juices to the duodenum. Although the ancient Greeks knew about the pancreas, its function and anatomy weren’t fully understood for centuries. That started to change in 1642, when German anatomist Johann Georg Wirsung discovered the pancreatic duct after performing a dissection on a man who had been hanged for murder. He named it the “duct of Wirsung” after himself, which may have upset some people. Wirsung was murdered the following year, allegedly over a disagreement as to who had actually discovered the duct.

4. It functions as both an endocrine and exocrine gland.

Although food never enters the pancreas, the organ does play a key role in digestion. It produces pancreatic fluid, which gets piped through the pancreatic duct to the duodenum. Once it’s in the digestive tract, the enzymes in the fluid help break down fat, protein, and carbohydrates. By sending a substance through ducts to other parts of the body, it functions as an exocrine gland. At the same time, it also functions as an endocrine gland by secreting two hormones directly into the bloodstream to help control blood sugars. Insulin is released when you have too much sugar, and glucagon is released when you don’t have enough sugar.

5. The pancreas can “taste” sugar.

The pancreas has taste receptor cells that let it sense the presence of sugar. It can “taste” artificial sweeteners, too. However, unlike the taste buds on our tongue, it doesn’t relay these sensations back to the brain. Instead, this sensory information helps the pancreas balance out the hormones and maintain healthy glucose levels in the body.

6. Diabetes is the result of damage to pancreatic cells.

For reasons that remain a scientific mystery, people with type 1 diabetes have immune systems that attack the insulin-producing cells in their pancreas. This prevents the cells from making insulin, and without insulin, other cells can't access the glucose in the bloodstream for energy. Sugar then builds up unhealthily in the bloodstream. People with type 2 diabetes, on the other hand, can still produce some insulin, but it’s not enough. Their cells become resistant to insulin (often as a result of obesity), which causes glucose to accumulate in the bloodstream.

7. The pancreas can digest itself.

Pancreatitis refers to the inflammation of the pancreas, but more alarmingly, what’s actually happening is that the digestive enzymes in the gland are going rogue and “digesting the pancreas itself,” according to Medline Plus. Heavy alcohol consumption is the most common cause of the disease, but other causes may include gallstones, cystic fibrosis, or high levels of fats or calcium in the blood. Most people with acute pancreatitis end up in the hospital, and it often goes away in a couple of days. Chronic pancreatitis can result in more serious complications.

8. Scorpion stings can cause pancreatitis.

The venom of a Brazilian scorpion, Tityus serrulatus, can cause pancreatitis, according to researchers at North Carolina State University. One particular enzyme in the venom attacks certain proteins in the gland, which impairs the pancreatic cells' functions and leads to inflammation. In a separate study of a related species (T. stigmurus), researchers found that “acute pancreatitis due to scorpion is usually transient [and] self-limited ... but it could progress to hemorrhagic pancreatitis and lead to death.”

9. Ruth Bader Ginsburg beat the odds and survived pancreatic cancer.

Ten years after she recovered from colon cancer, Ruth Bader Ginsburg received bad news following a routine check-up in 2009: She had pancreatic cancer. Fortunately, surgeons were able to remove the tumor, and at 85 years old (and counting), Ginsburg is now the oldest Justice on the U.S. Supreme Court. However, most people with pancreatic cancer aren’t so lucky. Although it’s less prevalent than skin, breast, and prostate cancers, it’s one of the deadliest. Just 8 percent of pancreatic cancer patients in the U.S. live longer than five years, according to the American Cancer Society.

James Cleary, an oncologist at the Dana-Farber Cancer Institute in Boston, says it’s very hard to catch in the early stages. “The reason pancreatic cancer can be so difficult to catch is number one, it’s a fast-moving cancer and can grow very rapidly,” he tells Mental Floss. “And number two, it can grow in a spot where you don’t get any symptoms until it’s too late.” In some cases, the cancer may start in the pancreas and spread to the liver or lining of the abdomen without any symptoms showing up.

10. Pancreatic surgery is extremely difficult to pull off.

Sometimes, patients with pancreatic cancer will undergo a complicated surgery called a Whipple procedure, which involves the removal of the head of the pancreas, part of the small intestine, the gallbladder and bile duct, and sometimes part of the stomach, too. However, very few people with pancreatic cancer are candidates for surgery—even if the cancer hasn’t yet spread to neighboring organs. That’s because cancer cells sometimes surround important blood vessels, making it “a tricky area” to operate on, according to Cleary. “The pancreas plays a really important role in digestion, and because of that, it’s very close to several important blood vessels and it’s very close to the stomach and small intestine,” he says.

11. There are genetic components to pancreatic cancer.

More than 90 percent of pancreatic cancers involve a mutation of the KRAS gene, which is also responsible for about half of all human cancers, according to Cleary. However, a drug hasn’t been invented yet to turn this particular gene off. “Finding a way to make a drug successfully target KRAS is one of holy grails of oncology," Cleary says. "It is of such great importance to oncology that a Nobel Prize could be awarded to whoever figures out how to make effective KRAS targeted therapy."

Mutations of DNA repair genes occur in up to 20 percent of pancreatic cancer cases. Some of these mutated genes, like BRCA1 and BRCA2, can run in families. This is why some families have several members who end up suffering from pancreatic cancer. Jimmy Carter, for example, lost his father, brother, and two sisters to pancreatic cancer. His mother had breast cancer that migrated to her pancreas. PARP inhibitors (drugs that block a particular enzyme) have been used to target DNA repair genes in breast and ovarian cancers, and there is now hope that they may also be effective in treating pancreatic cancer.

12. An aggressive form of chemotherapy is helping pancreatic cancer patients live longer.

A chemotherapy regimen called FOLFIRINOX has made significant improvements in the care of pancreatic cancer patients ever since it was introduced in 2010 as a treatment for patients with metastatic disease. Before 2010, “It was very, very rare to see anyone with metastatic cancer living longer than one year,” Cleary says. With FOLFIRNOX, it's not uncommon to see patients with metastatic pancreatic cancer living two years. A huge step forward came in June 2018 when researchers from France found that giving FOLFIRINOX after surgery could increase survival by a median of 20 months longer compared to the standard chemotherapy. Now, researchers are conducting trials to see if FOLFIRINOX can effectively be administered before a patient undergoes surgery. Considering that most patients aren’t eligible for surgery at diagnosis, pre-operative FOLFIRINOX could shrink the pancreatic tumor and increase the number of patients that are able to safely receive surgery.

14 Facts About Feet

iStock/pepifoto
iStock/pepifoto

The foot is one of the most overworked, under-appreciated parts of the human body. Think about it: In a single day, the average person takes 8000 to 10,000 steps. That works out to be four trips around the world over a lifetime, putting a lot of wear and tear on your intricate foot bones. The foot may be humble, but its design is essential to how we walk upright, and hoofing it on two feet is a defining feature of humanity. Here are some fun—and a few funky—facts about the human foot.

1. FOOT BONES MAKE UP ABOUT A QUARTER OF ALL THE BONES IN OUR BODIES.

There are 26 foot bones in each of your feet—one less than in each hand. When we’re born, those foot bones are mostly cartilage. They only completely harden around age 21.

2. HUMANS HAVE WORN SHOES FOR A VERY LONG TIME.

When did humans begin wearing shoes, anyway? About 40,000 years ago, according to research from Washington University in St. Louis that analyzed foot bones from Neanderthals and early humans. Older specimens had thicker, stronger toes, likely from gripping the ground as they walked barefoot. That’s around the same time that the archaeological record shows a burst of artistic and technological advancements among early humans, including the first stone tools, which may have aided in the production of shoes. The oldest preserved shoe, incidentally, is 5500 years old and was found in an Armenian cave, buried in sheep dung.

3. THE BIG TOE USED TO BE A KIND OF FOOT THUMB.

This grasping toe helped our predecessors climb trees and, when young, grip onto their mothers. Thanks to modern science, if you lose your thumb, you can now replace it with a toe: toe-to-thumb transplants are a surprisingly common procedure these days.

4. FOOT BONES HOLD BIG CLUES ABOUT THE EVOLUTION OF BIPEDALISM.

Scientists are studying Homo naledi, a specimen discovered in a South African cave in 2013 that many researchers believe is a new human relative. H. naledi had very human-like feet, but with somewhat curved toe bones that suggest it climbed trees. It could be that H. naledi was beginning to experiment with walking. 

5. THERE WAS A FOOT CHEESE EXHIBITION IN IRELAND.

Warm, sweaty feet make a perfect home for bacteria, which feed on our dead skin cells and produce gases and acids that emit those arresting foot odors. They're apparently also good at cultivating cheese. An exhibition in Dublin in 2013 displayed a variety of cheeses made with bacteria samples obtained from real people’s feet, armpits, and belly buttons. Delicious. (No one actually ate any of the cheeses.)

6. FEET ARE ONE OF THE MOST TICKLISH PARTS OF THE BODY.

There’s a good reason for that: Humans have nearly 8000 nerves in our feet and a large number of nerve endings near the skin. Having ticklish feet can be a good sign: Reduced sensitivity can be an indicator of peripheral neuropathy (numbness in the feet caused by nerve damage). 

7. FOOT NUMBNESS CAN CAUSE BIG PROBLEMS FOR DIABETICS.

Complications of diabetes include poor circulation and foot numbness that can lead to serious skin ulcers, which sometimes require amputation of toes or feet. In 2010 alone, 73,000 lower-limb amputations were performed on diabetics.

8. FOOT SIZES AND WIDTHS IN THE U.S. AND UK ARE INCREASING.

Feet are spreading to support extra weight as our populations pack on the pounds. According to a 2014 study by the College of Podiatry in the UK, the average foot has increased two sizes since the 1970s. As people have grown taller and heavier, feet respond by growing. It appears many people are still in denial about their expanding feet: Though retailers are starting to respond by making larger and roomier shoes, half of women and a third of men reported they buy poorly fitting shoes. Podiatrists say ill-fitting shoes are to blame for a significant portion of foot problems, especially among women.

9. MANY GLAMOROUS CELEBRITIES HAVE BIG FEET.

From the bound feet of female Chinese elites to Cinderella and Barbie, freakishly small feet are often celebrated as more feminine. But plenty of glamorous women both past and present have had larger than average feet, among them Jacqueline Kennedy, Oprah Winfrey, Uma Thurman, and Audrey Hepburn (size 10, 11, 11, and 10.5, respectively).

10. WOMEN HAVE FOUR TIMES AS MANY FOOT PROBLEMS AS MEN.

That painful fact is often attributed to wearing heels. Ironically, Western women started wearing heels to effect a more masculine look: European men adopted the look from Persian warriors in the 17th century, and women soon followed suit.

11. THE AVERAGE PERSON WALKS ABOUT 100,000 MILES IN A LIFETIME. 

That’s a lot of stress on our feet. It’s not surprising, then, that lower back pain, headaches, indigestion, and spine misalignment are often related to foot problems. Some runners blow way past this mark: They've logged at least 100,000 in running miles alone. One committed runner, Herb Fred, has run a whopping 247,142 miles.

12. FOOT SIZE HAS ZERO TO DO WITH PENIS SIZE.

In a study published in 2015, researchers synthesized data from 17 previous studies that included the penis measurements of more than 15,000 men from around the world. The results: There is little evidence that penis size is linked to height, body mass, or shoe size.

13. THERE'S A REASON GRANDPA'S TOENAILS LOOK LIKE THAT.

Ever heard someone describing their toenails as “horse hooves”? As we get older, our toenails tend to thicken, making them hard to trim. This happens because toenails grow more slowly as we age, causing the nail cells to accumulate. Stubbing toes, bad shoes, and dropping things on your feet can also cause thickening, as can fungal infections and peripheral arterial disease, which narrows arteries and reduces the blood flow to limbs.

14. THERE'S A GUINNESS WORLD RECORD FOR MOST FEET AND ARMPITS SNIFFED.

Odds are you don’t have any job-related tasks nearly as revolting as this one: In the 15 years that Madeline Albrecht worked for an Ohio lab that tests Dr. Scholl products, she sniffed more than 5600 feet and untold numbers of armpits. Albrecht currently holds the Guinness World Record for—yes, this is a category—the number of feet and armpits sniffed.

SECTIONS

arrow
LIVE SMARTER